R/tabularise.glm.R
tabularise_coef.summary.glm.Rd
Create a rich-formatted {flextable} object with the table of coefficients
from the summary()
of a glm object.
# S3 method for class 'summary.glm'
tabularise_coef(
data,
header = TRUE,
title = NULL,
equation = header,
auto.labs = TRUE,
origdata = NULL,
labs = NULL,
lang = getOption("SciViews_lang", default = Sys.getenv("LANGUAGE", unset = "en")),
show.signif.stars = getOption("show.signif.stars", TRUE),
...,
kind = "ft",
env = parent.frame()
)
A summary.glm object
If TRUE
(by default), add a header to the table
If TRUE
, add a title to the table header. Default to the same
value than header, except outside of a chunk where it is FALSE
if a table
caption is detected (tbl-cap
YAML entry).
If TRUE
(by default), try to add a equation to the table
header. The equation can also be passed in the form of a character string.
If TRUE
(by default), use labels (and units) automatically
from data or origdata=
.
The original data set this model was fitted to. By default it
is NULL
and no label is used.
Labels to change the names of elements in the term
column of
the table. By default it is NULL
and nothing is changed.
The natural language to use. The default value can be set with,
e.g., options(SciViews_lang = "fr")
for French.
If TRUE
, add the significance stars to the table.
The default is getOption("show.signif.stars")
Additional arguments
The kind of table to produce: "tt" for tinytable, or "ft" for flextable (default).
The environment where to evaluate formulas (you probably do not need to change the default).
A flextable object that you can print in different formats (HTML, LaTeX, Word, PowerPoint) or rearrange with the {flextable} functions.
iris_glm <- glm(data = iris, Petal.Length ~ Sepal.Length)
iris_glm_sum <- summary(iris_glm)
tabularise::tabularise_coef(iris_glm_sum)
Generalized Linear Model
Term
Estimate
Standard Error
t value
p value
Intercept
-7.10
0.5067
-14.0
< 2·10-16
Sepal.Length
1.86
0.0859
21.6
< 2·10-16
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05