R/tabularise.anova.R
tabularise_tidy.anova.Rd
Tidy version of the anova object into a flextable object
# S3 method for class 'anova'
tabularise_tidy(data, ...)
An anova object
Additional arguments used tabularise_default.anova()
A flextable object you can print in different form or rearrange with the {flextable} functions.
is <- data.io::read("iris", package = "datasets")
is_lm1 <- lm(data = is, petal_length ~ species)
library(tabularise)
anova(is_lm1) |> tabularise_tidy()
Analysis of variance
Response: petal_length
Term
Df
Sum of squares
Mean squares
Fobs. value
p value
species
2
437.1
218.551
1180
< 2·10-16
***
Residuals
147
27.2
0.185
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05
# identical
anova(is_lm1) |> tabularise$tidy()
Analysis of variance
Response: petal_length
Term
Df
Sum of squares
Mean squares
Fobs. value
p value
species
2
437.1
218.551
1180
< 2·10-16
***
Residuals
147
27.2
0.185
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05
# Use labels
anova(is_lm1) |> tabularise$tidy(origdata = is)
Analysis of variance
Response: Length of the petals [cm]
Term
Df
Sum of squares
Mean squares
Fobs. value
p value
Iris species
2
437.1
218.551
1180
< 2·10-16
***
Residuals
147
27.2
0.185
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05
# alternative with anova_() in {modelit} package
anova_(is_lm1) |> tabularise$tidy()
Analysis of variance
Response: Length of the petals [cm]
Term
Df
Sum of squares
Mean squares
Fobs. value
p value
Iris species
2
437.1
218.551
1180
< 2·10-16
***
Residuals
147
27.2
0.185
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05