
Functions for subsetting rows based on conditions or by position.
These are SciViews::R versions of tidyverse functions with standard
evaluation and formula-based non-standard evaluation (ending with underscore
_). They work with data.frame, data.table, and tibbles.
Functions:
filter_() - Keep rows that match conditions
distinct_() - Keep only unique/distinct rows based on columns
slice_() - Select rows by position (index)
slice_head_() - Select first n rows or proportion
slice_tail_() - Select last n rows or proportion
filter_(.data = (.), ..., .by = NULL, .preserve = FALSE)
distinct_(.data = (.), ..., .keep_all = FALSE, .method = "auto")
slice_(.data = (.), ..., .by = NULL, .preserve = NULL)
slice_head_(.data = (.), ..., n = 1L, prop, by = NULL, sort = TRUE)
slice_tail_(.data = (.), ..., n = 1L, prop, by = NULL, sort = TRUE)A data frame (data.frame, data.table, or tibble)
For filter_(): conditions as formulas (e.g., ~mpg > 20).
For distinct_(): columns to use for uniqueness.
For slice_(): row positions.
A list of names of the columns to use for grouping the data.
Logical. When TRUE, preserve the grouping structure in
the result. When FALSE (default), recalculate grouping based on the
filtered data.
Logical. For distinct_(), if TRUE, keep all columns in
the result. If FALSE (default), keep only the distinct columns.
The algorithm to use for grouping: "radix", "hash", or
"auto" (by default). "auto" chose "radix" when sort = TRUE and
"hash" otherwise.
Number of rows to keep
Proportion of rows to keep, between 0 and 1. Provide either n,
or prop but not both simultaneously. If none is provided, n = 1 is
used.
@param by A list of names of the columns to use for joining the two data
frames.
A list of names of the columns to use for grouping the data.
If TRUE largest group will be shown on top.
A data frame with filtered/selected rows, maintaining the same class as the input (data.frame, data.table, or tibble).
From {dplyr}, the slice_min(), slice_max() and slice_sample()
functions are not added yet.
library(svTidy)
data(mtcars)
# Filter rows with condition
mtcars |> filter_(~mpg > 20)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# Multiple conditions (AND logic)
mtcars |> filter_(~mpg > 20, ~cyl == 4)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# Get distinct values for columns
mtcars |> distinct_(~cyl, ~gear)
#> cyl gear
#> Mazda RX4 6 4
#> Datsun 710 4 4
#> Hornet 4 Drive 6 3
#> Hornet Sportabout 8 3
#> Toyota Corona 4 3
#> Porsche 914-2 4 5
#> Ford Pantera L 8 5
#> Ferrari Dino 6 5
# Distinct with all columns kept
mtcars |> distinct_(~cyl, .keep_all = TRUE)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.62 16.46 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
# Slice specific rows
mtcars |> slice_(1, 5, 10)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.62 16.46 0 1 4 4
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2
#> Merc 280 19.2 6 167.6 123 3.92 3.44 18.30 1 0 4 4
# Select first 5 rows
mtcars |> slice_head_(n = 5)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# Select last 10% of rows
mtcars |> slice_tail_(prop = 0.1)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
#> Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8
#> Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
# Grouped filtering
mtcars |>
group_by_(~cyl) |>
filter_(~mpg > mean(~mpg))
#> Warning: argument is not numeric or logical: returning NA
#> Warning: argument is not numeric or logical: returning NA
#> Warning: argument is not numeric or logical: returning NA
#> [1] mpg cyl disp hp drat wt qsec vs am gear carb
#> <0 rows> (or 0-length row.names)
#>
#> Grouped by: cyl [0 | NaN]