loading...

Functions for subsetting rows based on conditions or by position.

These are SciViews::R versions of tidyverse functions with standard evaluation and formula-based non-standard evaluation (ending with underscore _). They work with data.frame, data.table, and tibbles.

Functions:

  • filter_() - Keep rows that match conditions

  • distinct_() - Keep only unique/distinct rows based on columns

  • slice_() - Select rows by position (index)

  • slice_head_() - Select first n rows or proportion

  • slice_tail_() - Select last n rows or proportion

filter_(.data = (.), ..., .by = NULL, .preserve = FALSE)

distinct_(.data = (.), ..., .keep_all = FALSE, .method = "auto")

slice_(.data = (.), ..., .by = NULL, .preserve = NULL)

slice_head_(.data = (.), ..., n = 1L, prop, by = NULL, sort = TRUE)

slice_tail_(.data = (.), ..., n = 1L, prop, by = NULL, sort = TRUE)

Arguments

.data

A data frame (data.frame, data.table, or tibble)

...

For filter_(): conditions as formulas (e.g., ~mpg > 20). For distinct_(): columns to use for uniqueness. For slice_(): row positions.

.by

A list of names of the columns to use for grouping the data.

.preserve

Logical. When TRUE, preserve the grouping structure in the result. When FALSE (default), recalculate grouping based on the filtered data.

.keep_all

Logical. For distinct_(), if TRUE, keep all columns in the result. If FALSE (default), keep only the distinct columns.

.method

The algorithm to use for grouping: "radix", "hash", or "auto" (by default). "auto" chose "radix" when sort = TRUE and "hash" otherwise.

n

Number of rows to keep

prop

Proportion of rows to keep, between 0 and 1. Provide either n, or prop but not both simultaneously. If none is provided, n = 1 is used. @param by A list of names of the columns to use for joining the two data frames.

by

A list of names of the columns to use for grouping the data.

sort

If TRUE largest group will be shown on top.

Value

A data frame with filtered/selected rows, maintaining the same class as the input (data.frame, data.table, or tibble).

Note

From {dplyr}, the slice_min(), slice_max() and slice_sample() functions are not added yet.

Examples

library(svTidy)
data(mtcars)

# Filter rows with condition
mtcars |> filter_(~mpg > 20)
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# Multiple conditions (AND logic)
mtcars |> filter_(~mpg > 20, ~cyl == 4)
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# Get distinct values for columns
mtcars |> distinct_(~cyl, ~gear)
#>                   cyl gear
#> Mazda RX4           6    4
#> Datsun 710          4    4
#> Hornet 4 Drive      6    3
#> Hornet Sportabout   8    3
#> Toyota Corona       4    3
#> Porsche 914-2       4    5
#> Ford Pantera L      8    5
#> Ferrari Dino        6    5

# Distinct with all columns kept
mtcars |> distinct_(~cyl, .keep_all = TRUE)
#>                    mpg cyl disp  hp drat   wt  qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.62 16.46  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.32 18.61  1  1    4    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.02  0  0    3    2

# Slice specific rows
mtcars |> slice_(1, 5, 10)
#>                    mpg cyl  disp  hp drat   wt  qsec vs am gear carb
#> Mazda RX4         21.0   6 160.0 110 3.90 2.62 16.46  0  1    4    4
#> Hornet Sportabout 18.7   8 360.0 175 3.15 3.44 17.02  0  0    3    2
#> Merc 280          19.2   6 167.6 123 3.92 3.44 18.30  1  0    4    4

# Select first 5 rows
mtcars |> slice_head_(n = 5)
#>                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2

# Select last 10% of rows
mtcars |> slice_tail_(prop = 0.1)
#>                mpg cyl disp  hp drat   wt qsec vs am gear carb
#> Ferrari Dino  19.7   6  145 175 3.62 2.77 15.5  0  1    5    6
#> Maserati Bora 15.0   8  301 335 3.54 3.57 14.6  0  1    5    8
#> Volvo 142E    21.4   4  121 109 4.11 2.78 18.6  1  1    4    2

# Grouped filtering
mtcars |>
  group_by_(~cyl) |>
  filter_(~mpg > mean(~mpg))
#> Warning: argument is not numeric or logical: returning NA
#> Warning: argument is not numeric or logical: returning NA
#> Warning: argument is not numeric or logical: returning NA
#>  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
#> <0 rows> (or 0-length row.names)
#> 
#> Grouped by:  cyl  [0 | NaN]