
Create a rich-formatted table from the summary of a nls object
Source:R/tabularise.nls.R
tabularise_default.summary.nls.Rd
Create a table of a summary.nls object. This table looks like the output
of print.summary.nls()
but richly formatted. The tabularise_coef()
function offers more customization options for this object.
Usage
# S3 method for summary.nls
tabularise_default(
data,
header = TRUE,
title = NULL,
equation = header,
footer = TRUE,
lang = getOption("data.io_lang", "en"),
show.signif.stars = getOption("show.signif.stars", TRUE),
...,
kind = "ft",
env = parent.frame()
)
Arguments
- data
A summary.nls object.
- header
If
TRUE
(by default), add a header to the table- title
If
TRUE
, add a title to the table header. Default to the same value than header, except outside of a chunk where it isFALSE
if a table caption is detected (tbl-cap
YAML entry).- equation
Add equation of the model to the table. If
TRUE
,equation()
is used. The equation can also be passed in the form of a character string (LaTeX equation).- footer
If
TRUE
(by default), add a footer to the table.- lang
The language to use. The default value can be set with, e.g.
options(data.io_lang = "fr")
for French.- show.signif.stars
If
TRUE
(by default), add the significance stars to the table.- ...
Additional arguments (Not used).
- kind
The kind of table to produce: "tt" for tinytable, or "ft" for flextable (default).
- env
The environment where to evaluate lazyeval expressions (unused for now).
Value
A flextable object that you can print in different forms or rearrange with the {flextable} functions.
Examples
data("ChickWeight", package = "datasets")
chick1 <- ChickWeight[ChickWeight$Chick == 1, ]
# Adjust a logistic curve
chick1_logis <- nls(data = chick1, weight ~ SSlogis(Time, Asym, xmid, scal))
chick1_logis_sum <- summary(chick1_logis)
tabularise::tabularise(chick1_logis_sum)
Nonlinear least squares logistic model
NA
Term
Estimate
Standard Error
tobs. value
p value
Asym
937.0
465.868
2.01
7.52·10-02
.
xmid
35.2
8.312
4.24
2.18·10-03
**
scal
11.4
0.905
12.60
5.08·10-07
***
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05
Residual standard error : 2.919 on 9 degrees of freedom
Number of iterations to convergence : 0
Achieved convergence tolerance : 7.343e-06
tabularise::tabularise(chick1_logis_sum, footer = FALSE)
Nonlinear least squares logistic model
NA
Term
Estimate
Standard Error
tobs. value
p value
Asym
937.0
465.868
2.01
7.52·10-02
.
xmid
35.2
8.312
4.24
2.18·10-03
**
scal
11.4
0.905
12.60
5.08·10-07
***
0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05