AutoD2.Rd
Compute and plot multiple autocorrelation using Mahalanobis generalized distance D2. AutoD2 uses the same multiple time-series. CrossD2 compares two sets of multiple time-series having same size (same number of descriptors). CenterD2 compares subsamples issued from a single multivariate time-series, aiming to detect discontinuities.
regularized multiple time-series
a second set of regularized multiple time-series
minimal and maximal lag to use. By default, 1 and a third of the number of observations in the series respectively
step between successive lags. By default, 1
the window to use for CenterD2. By default, a fifth of the total number of observations in the series
if TRUE
then also plot the graph
if TRUE
then the graph is added to the current figure
The type of line to draw in the CenterD2 graph. By default, a line without points
The significance level to consider in the CenterD2 analysis. By default 5%
Do we have to plot also the horizontal line representing the significance level on the graph?
The color of the significance level line. By default, color 2 is used
The style for the significance level line. By default: llty=2
, a dashed line is drawn
additional graph parameters
An object of class 'D2' which contains:
The vector of lags
The D2 value for this lag
The command invoked when this function was called
The series used
The type of 'D2' analysis: 'AutoD2', 'CrossD2' or 'CenterD2'
The size of the window used in the CenterD2 analysis
The significance level for CenterD2
The chi-square value corresponding to the significance level in the CenterD2 analysis
Time units of the series, nicely formatted for graphs
Cooley, W.W. & P.R. Lohnes, 1962. Multivariate procedures for the behavioral sciences. Whiley & sons.
Dagnélie, P., 1975. Analyse statistique ? plusieurs variables. Presses Agronomiques de Gembloux.
Ibanez, F., 1975. Contribution à l'analyse mathématique des évènements en écologie planctonique: optimisations méthodologiques; étude expérimentale en continu à petite échelle du plancton côtier. Thèse d'état, Paris VI.
Ibanez, F., 1976. Contribution à l'analyse mathématique des évènements en écologie planctonique. Optimisations méthodologiques. Bull. Inst. Océanogr. Monaco, 72:1-96.
Ibanez, F., 1981. Immediate detection of heterogeneities in continuous multivariate oceanographic recordings. Application to time series analysis of changes in the bay of Villefranche sur mer. Limnol. Oceanogr., 26:336-349.
Ibanez, F., 1991. Treatment of the data deriving from the COST 647 project on coastal benthic ecology: The within-site analysis. In: B. Keegan (ed), Space and time series data analysis in coastal benthic ecology, p 5-43.
If data are too heterogeneous, results could be biased (a singularity matrix appears in the calculations).
data(marphy)
marphy.ts <- as.ts(as.matrix(marphy[, 1:3]))
AutoD2(marphy.ts)
#> $lag
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#>
#> $D2
#> [1] 4.22573 10.58976 23.47267 43.38305 153.44283 433.54182
#> [7] 1064.54132 1802.43083 1940.63240 2111.62737 2298.56609 2166.24216
#> [13] 2443.59445 2708.61304 3121.54365 3267.95116 2370.99649 1772.94559
#> [19] 1366.08938 1239.05153 1045.82545 163.43575
#>
#> $call
#> AutoD2(series = marphy.ts)
#>
#> $data
#> [1] "marphy.ts"
#>
#> $type
#> [1] "AutoD2"
#>
#> $units.text
#> [1] ""
#>
#> attr(,"class")
#> [1] "D2"
marphy.ts2 <- as.ts(as.matrix(marphy[, c(1, 4, 3)]))
CrossD2(marphy.ts, marphy.ts2)
#> $lag
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#>
#> $D2
#> [1] 4.323043 10.155231 45.764444 124.524831 395.341890
#> [6] 1008.216533 2314.110604 3780.247450 4391.117099 5289.482066
#> [11] 6527.234759 7341.803004 9887.267753 13544.128938 18768.866938
#> [16] 24708.252337 23961.156382 23500.686505 23796.894859 25932.921344
#> [21] 28394.452862 22836.606581
#>
#> $call
#> CrossD2(series = marphy.ts, series2 = marphy.ts2)
#>
#> $data
#> [1] "marphy.ts"
#>
#> $data2
#> [1] "marphy.ts2"
#>
#> $type
#> [1] "CrossD2"
#>
#> $units.text
#> [1] ""
#>
#> attr(,"class")
#> [1] "D2"
# This is not identical to:
CrossD2(marphy.ts2, marphy.ts)
#> $lag
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#>
#> $D2
#> [1] 30.76921 62.83820 112.50639 215.13122 475.90799 979.41968
#> [7] 1907.94064 2927.17901 3434.67167 4209.00250 4918.96322 5091.38349
#> [13] 5842.69358 6713.53204 7942.49390 8759.94122 7834.21656 7034.27185
#> [19] 6140.98599 5689.15330 5334.47184 3841.11059
#>
#> $call
#> CrossD2(series = marphy.ts2, series2 = marphy.ts)
#>
#> $data
#> [1] "marphy.ts2"
#>
#> $data2
#> [1] "marphy.ts"
#>
#> $type
#> [1] "CrossD2"
#>
#> $units.text
#> [1] ""
#>
#> attr(,"class")
#> [1] "D2"
marphy.d2 <- CenterD2(marphy.ts, window=16)
lines(c(17, 17), c(-1, 15), col=4, lty=2)
lines(c(25, 25), c(-1, 15), col=4, lty=2)
lines(c(30, 30), c(-1, 15), col=4, lty=2)
lines(c(41, 41), c(-1, 15), col=4, lty=2)
lines(c(46, 46), c(-1, 15), col=4, lty=2)
text(c(8.5, 21, 27.5, 35, 43.5, 57), 11, labels=c("Peripheral Zone", "D1",
"C", "Front", "D2", "Central Zone")) # Labels
time(marphy.ts)[marphy.d2$D2 > marphy.d2$chisq]
#> [1] 17 26 32 42 43 46 60