loading...

All functions

AutoD2() CrossD2() CenterD2()

AutoD2, CrossD2 or CenterD2 analysis of a multiple time-series

GetUnitText()

Format a nice time units for labels in graphs

abund() extract(<abund>) identify(<abund>) lines(<abund>) plot(<abund>) print(<abund>) print(<summary.abund>) summary(<abund>)

Sort variables by abundance

bnr

A data frame of 163 benthic species measured across a transect

buysbal()

Buys-Ballot table

daystoyears() yearstodays()

Convert time units from "days" to "years" or back

decaverage()

Time series decomposition using a moving average

deccensus()

Time decomposition using the CENSUS II method

decdiff()

Time series decomposition using differences (trend elimination)

decevf()

Time series decomposition using eigenvector filtering (EVF)

decloess()

Time series decomposition by the LOESS method

decmedian()

Time series decomposition using a running median

decreg()

Time series decomposition using a regression model

disjoin()

Complete disjoined coded data (binary coding)

disto()

Compute and plot a distogram

escouf() print(<escouf>) summary(<escouf>) print(<summary.escouf>) plot(<escouf>) lines(<escouf>) identify(<escouf>) extract(<escouf>)

Choose variables using the Escoufier's equivalent vectors method

extract()

Extract a subset of the original dataset

first()

Get the first element of a vector

.gleissberg.table

Table of probabilities according to the Gleissberg distribution

is.tseries()

Is this object a time series?

last()

Get the last element of a vector

local.trend() identify(<local.trend>)

Calculate local trends using cumsum

marbio

Several zooplankton taxa measured across a transect

marphy

Physico-chemical records at the same stations as for marbio

match.tol()

Determine matching observation with a tolerance in time-scale

pennington()

Calculate Pennington statistics

pgleissberg()

Gleissberg distribution probability

regarea()

Regulate a series using the area method

regconst()

Regulate a series using the constant value method

reglin()

Regulation of a series using a linear interpolation

regspline()

Regulation of a time series using splines

regul() print(<regul>) summary(<regul>) print(<summary.regul>) plot(<regul>) lines(<regul>) identify(<regul>) hist(<regul>) extract(<regul>) specs(<regul>) print(<specs.regul>)

Regulation of one or several time series using various methods

regul.adj()

Adjust regulation parameters

regul.screen()

Test various regulation parameters

releve

A data frame of six phytoplankton taxa followed in time at one station

specs()

Collect parameters ("specifications") from one object to use them in another analysis

stat.desc()

Descriptive statistics on a data frame or time series

stat.pen()

Pennington statistics on a data frame or time series

stat.slide() print(<stat.slide>) plot(<stat.slide>) lines(<stat.slide>)

Sliding statistics

trend.test()

Test if an increasing or decreasing trend exists in a time series

tsd() print(<tsd>) summary(<tsd>) print(<summary.tsd>) plot(<tsd>) extract(<tsd>) specs(<tsd>) print(<specs.tsd>)

Decomposition of one or several regular time series using various methods

tseries()

Convert a 'regul' or a 'tsd' object into a time series

turnogram() print(<turnogram>) summary(<turnogram>) print(<summary.turnogram>) plot(<turnogram>) identify(<turnogram>) extract(<turnogram>)

Calculate and plot a turnogram for a regular time series

turnpoints() print(<turnpoints>) summary(<turnpoints>) print(<summary.turnpoints>) plot(<turnpoints>) lines(<turnpoints>) extract(<turnpoints>)

Analyze turning points (peaks or pits)

vario()

Compute and plot a semi-variogram