stat.pen.Rd
Compute a table giving various descriptive statistics, including Pennington's estimators of the mean, the variance and the variance of the mean, about the series in a data frame or in a single/multiple time series
stat.pen(x, basic=FALSE, desc=FALSE)
a data frame or a time series
do we have to return also basic statistics (by default, it is FALSE)? These are: the number of values (nbr.val), the number of null values (nbr.null), the number of missing values (nbr.na), the minimal value (min), the maximal value (max), the range (range, that is, max-min) and the sum of all non-missing values (sum)
do we have to return also various descriptive statistics (by default, it is FALSE)? These are: the median (median), the mean (mean), the standard error on the mean (SE.mean), the confidence interval of the mean (CI.mean) at the p
level, the variance (var), the standard deviation (std.dev) and the variation coefficient (coef.var) defined as the standard deviation divided by the mean
a data frame with the various statistics in rows and with each column corresponding to a variable in the data frame, or to a separate time series
Aitchison, J., 1955. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Amer. Stat. Ass., 50:901-908.
Pennington, M., 1983. Efficient estimations of abundance for fish and plankton surveys. Biometrics, 39:281-286.
If you prefer to get separate statistics for various time intervals in your time series, use stat.slide()
. Various other descriptive statistics, including test of the normal distribution are also available in stat.desc()
data(marbio)
stat.pen(marbio[,c(4, 14:16)], basic=TRUE, desc=TRUE)
#> Copepodits2 Oithona Acanthaires Cladocerans
#> nbr.val 68.000000 68.000 68.000000 68.000000
#> nbr.null 5.000000 0.000 8.000000 45.000000
#> percnull 7.352941 0.000 11.764706 66.176471
#> nbr.na 0.000000 0.000 0.000000 0.000000
#> median 24.500000 1228.000 12.000000 0.000000
#> mean 39.632353 1546.456 14.514706 5.794118
#> var 1619.877744 1642971.655 144.731124 626.762950
#> std.dev 40.247705 1281.785 12.030425 25.035234
#> pos.median 28.000000 1228.000 13.000000 4.000000
#> pos.mean 42.777778 1546.456 16.450000 17.130435
#> pos.var 1613.788530 1642971.655 131.980508 1705.754941
#> pos.std.dev 40.171987 1281.785 11.488277 41.300786
#> geo.mean 31.504949 1161.198 12.030807 6.482851
#> pen.mean 38.604561 1624.345 16.011929 4.183929
#> pen.var 1302.882154 2463485.626 389.856084 144.116540
#> pen.std.dev 36.095459 1569.549 19.744774 12.004855
#> pen.mean.var 18.476177 34230.002 5.325181 1.900941