loading...

Sort variables (usually species in a species x stations matrix) in function of their abundance, either in number of non-null values, or in number of individuals (in log). The f coefficient allows adjusting weight given to each of these two criteria.

abund(x, f = 0.2)

# S3 method for class 'abund'
extract(e, n, left = TRUE, ...)
# S3 method for class 'abund'
identify(x, label.pts = FALSE, lvert = TRUE, lvars = TRUE, col = 2, lty = 2, ...)
# S3 method for class 'abund'
lines(x, n = x$n, lvert = TRUE, lvars = TRUE, col = 2, lty = 2, ...)
# S3 method for class 'abund'
plot(x, n = x$n, lvert = TRUE, lvars = TRUE, lcol = 2, llty = 2, all = TRUE,
    dlab = c("cumsum", "% log(ind.)", "% non-zero"), dcol = c(1,2,4),
    dlty = c(par("lty"), par("lty"), par("lty")), dpos = c(1.5, 20), type = "l",
    xlab = "variables", ylab = "abundance",
    main = paste("Abundance sorting for:",x$data, "with f =", round(x$f, 4)), ...)
# S3 method for class 'abund'
print(x, ...)
# S3 method for class 'summary.abund'
print(x, ...)
# S3 method for class 'abund'
summary(object, ...)

Arguments

x

A data frame containing the variables to sort according to their abundance in columns for abund, or an 'abund' object for the methods

f

Weight given to the number of individuals criterium (strictly included between 0 and 1; weight for the non-null values is 1-f. The default value, f=0.2, gives enough weight to the number of non-null values to get abundant species according to this criterium first, but allowing to get at the other extreme rare, but locally abundant species

object

An 'abund' object returned by abund

e

An 'abund' object returned by abund

n

The number of variables selected at left

type

the type of graph to plot. By default, lines with 'l'

lvert

If TRUE then a vertical line separate the n variables at left from the others

lvars

If TRUE then the x-axis labels of the n left variables are printed in a different color to emphasize them

lcol

The color to use to draw the vertical line (lvert=TRUE) and the variables labels (lvars=TRUE) at left of the nth variable. By default, color 2 is used

llty

The style used to draw the vertical line (lvert=TRUE). By default, a dashed line is used

xlab

the label of the x-axis

ylab

the label of the y-axis

main

the main title of the graph

all

If TRUE then all lines are drawn (cumsum, %log(ind.) and %non-null). If FALSE, only the cumsum line is drawn

dlab

The legend labels

dcol

Colors to use for drawing the various curves on the graph

dlty

The line style to use for drawing the various curves on the graph

dpos

The position of the legend box on the graph (coordinates of its top-left corner). A legend box is drawn only if all=TRUE

col

The color to use to draw lines

lty

The style used to draw lines

...

additional parameters

label.pts

Do we have to label points on the graph or to chose an extraction level with the identify() method?

left

If TRUE, the n variables at left are extracted. Otherwise, the total-n variables at right are extracted

Details

Successive sorts can be applied. For instance, a first sort with f = 0.2, followed by an extraction of rare species and another sort with f = 1 allows to collect only rare but locally abundant species.

Value

An object of type 'abund' is returned. It has methods print(), summary(), plot(), lines(), identify(), extract().

References

Ibanez, F., J.-C. Dauvin & M. Etienne, 1993. Comparaison des évolutions à long terme (1977-1990) de deux peuplements macrobenthiques de la baie de Morlaix (Manche occidentale): relations avec les facteurs hydroclimatiques. J. Exp. Mar. Biol. Ecol., 169:181-214.

Author

Philippe Grosjean (phgrosjean@sciviews.org), Frédéric Ibanez (ibanez@obs-vlfr.fr)

See also

Examples

data(bnr)
bnr.abd <- abund(bnr)
summary(bnr.abd)
#> 
#> Sorting of descriptors according to abundance for: bnr 
#> 
#> Coefficient f: 0.2 
#> 163 variables sorted
#> 
#> Number of individuals (% of most abundant in log):
#>         S8         S2         S3         S4         S6        S13         S1 
#>  72.273641  90.069317  88.739428  78.019800  76.302796  68.235798 100.000000 
#>         S5        S10        S14         S9        S15        S21        S17 
#>  77.095883  70.713663  67.746617  71.405852  65.019607  56.765809  61.013010 
#>        S22        S39        S12        S26        S25        S11        S38 
#>  56.217342  42.731127  68.629878  53.892117  55.223940  68.848694  43.220902 
#>        S19        S20        S29        S37        S41        S27        S16 
#>  60.065505  56.854955  50.145792  43.416565  42.561076  51.790497  62.798247 
#>        S45        S23        S43        S33        S36        S24        S47 
#>  41.106427  55.899523  42.254638  47.328915  44.929107  55.322688  39.646573 
#>        S49        S52        S31        S32        S46        S67        S58 
#>  38.667117  36.354344  49.292179  48.648509  39.888968  27.616484  32.237324 
#>        S50        S71        S54        S35        S61        S18        S34 
#>  36.889898  25.804639  33.768615  45.427018  31.764202  60.458819  47.328915 
#>        S68         S7        S69        S64        S72        S62        S48 
#>  27.056287  74.463292  26.760995  28.868131  25.459071  30.908713  39.396718 
#>        S70        S59        S78        S51        S42        S80        S53 
#>  26.454557  32.082659  23.004660  36.803057  42.431159  20.176537  35.976618 
#>        S73        S88       S100        S84        S77        S55        S56 
#>  25.459071  17.840663  14.548434  19.470036  23.468766  32.538086  32.538086 
#>        S30       S112       S135       S136       S137       S138       S139 
#>  49.694585  11.256205   0.000000   0.000000   0.000000   0.000000   0.000000 
#>       S140       S141       S142       S143       S144       S145       S146 
#>   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000 
#>       S147       S148       S149       S150       S151       S152       S153 
#>   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000 
#>       S154       S155       S156       S157       S158       S159       S160 
#>   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000 
#>       S161       S162       S163        S92        S74       S114        S90 
#>   0.000000   0.000000   0.000000  15.800081  24.324255   8.920332  16.884308 
#>        S91       S107       S119       S120       S121       S125       S127 
#>  16.884308  13.068049   5.628103   5.628103   5.628103   5.628103   5.628103 
#>       S128       S131       S132       S133       S134        S93        S96 
#>   5.628103   5.628103   5.628103   5.628103   5.628103  14.548434  14.548434 
#>        S98        S85        S83       S113       S115       S117       S102 
#>  14.548434  18.696152  19.470036   8.920332   8.920332   8.920332  13.068049 
#>       S103       S108       S122       S123       S124       S126       S129 
#>  13.068049  13.068049   5.628103   5.628103   5.628103   5.628103   5.628103 
#>       S130        S89        S94        S95        S97       S101       S110 
#>   5.628103  17.840663  14.548434  14.548434  14.548434  14.548434  11.256205 
#>       S111        S81       S116       S118       S104       S105       S106 
#>  11.256205  20.176537   8.920332   8.920332  13.068049  13.068049  13.068049 
#>        S63        S99        S87       S109        S60        S75        S82 
#>  29.096868  14.548434  18.696152  11.256205  31.764202  24.324255  19.470036 
#>        S76        S79        S86        S57        S65        S66        S44 
#>  23.468766  20.826454  18.696152  32.538086  28.632763  28.390368  41.700812 
#>        S28        S40 
#>  50.964058  42.688947 
#> 
#> Percent of non-zero values:
#>         S8         S2         S3         S4         S6        S13         S1 
#> 95.1456311 95.1456311 93.2038835 89.3203883 86.4077670 82.5242718 89.3203883 
#>         S5        S10        S14         S9        S15        S21        S17 
#> 83.4951456 81.5533981 79.6116505 78.6407767 76.6990291 70.8737864 70.8737864 
#>        S22        S39        S12        S26        S25        S11        S38 
#> 68.9320388 64.0776699 67.9611650 64.0776699 64.0776699 66.0194175 59.2233010 
#>        S19        S20        S29        S37        S41        S27        S16 
#> 63.1067961 58.2524272 54.3689320 51.4563107 49.5145631 50.4854369 51.4563107 
#>        S45        S23        S43        S33        S36        S24        S47 
#> 43.6893204 44.6601942 39.8058252 38.8349515 35.9223301 37.8640777 33.0097087 
#>        S49        S52        S31        S32        S46        S67        S58 
#> 30.0970874 28.1553398 31.0679612 30.0970874 23.3009709 19.4174757 20.3883495 
#>        S50        S71        S54        S35        S61        S18        S34 
#> 21.3592233 18.4466019 20.3883495 23.3009709 19.4174757 26.2135922 22.3300971 
#>        S68         S7        S69        S64        S72        S62        S48 
#> 16.5048544 28.1553398 15.5339806 15.5339806 14.5631068 15.5339806 16.5048544 
#>        S70        S59        S78        S51        S42        S80        S53 
#> 12.6213592 12.6213592  9.7087379 12.6213592 13.5922330  7.7669903 11.6504854 
#>        S73        S88       S100        S84        S77        S55        S56 
#>  8.7378641  6.7961165  5.8252427  6.7961165  7.7669903  9.7087379  9.7087379 
#>        S30       S112       S135       S136       S137       S138       S139 
#> 13.5922330  3.8834951  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738 
#>       S140       S141       S142       S143       S144       S145       S146 
#>  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738 
#>       S147       S148       S149       S150       S151       S152       S153 
#>  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738 
#>       S154       S155       S156       S157       S158       S159       S160 
#>  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738 
#>       S161       S162       S163        S92        S74       S114        S90 
#>  0.9708738  0.9708738  0.9708738  4.8543689  6.7961165  2.9126214  4.8543689 
#>        S91       S107       S119       S120       S121       S125       S127 
#>  4.8543689  3.8834951  1.9417476  1.9417476  1.9417476  1.9417476  1.9417476 
#>       S128       S131       S132       S133       S134        S93        S96 
#>  1.9417476  1.9417476  1.9417476  1.9417476  1.9417476  3.8834951  3.8834951 
#>        S98        S85        S83       S113       S115       S117       S102 
#>  3.8834951  4.8543689  4.8543689  1.9417476  1.9417476  1.9417476  2.9126214 
#>       S103       S108       S122       S123       S124       S126       S129 
#>  2.9126214  2.9126214  0.9708738  0.9708738  0.9708738  0.9708738  0.9708738 
#>       S130        S89        S94        S95        S97       S101       S110 
#>  0.9708738  3.8834951  2.9126214  2.9126214  2.9126214  2.9126214  1.9417476 
#>       S111        S81       S116       S118       S104       S105       S106 
#>  1.9417476  3.8834951  0.9708738  0.9708738  1.9417476  1.9417476  1.9417476 
#>        S63        S99        S87       S109        S60        S75        S82 
#>  5.8252427  1.9417476  2.9126214  0.9708738  5.8252427  3.8834951  1.9417476 
#>        S76        S79        S86        S57        S65        S66        S44 
#>  2.9126214  1.9417476  0.9708738  3.8834951  1.9417476  0.9708738  3.8834951 
#>        S28        S40 
#>  4.8543689  0.9708738 
plot(bnr.abd, dpos=c(105, 100))
bnr.abd$n <- 26
# To identify a point on the graph, use: bnr.abd$n <- identify(bnr.abd)
lines(bnr.abd)

bnr2 <- extract(bnr.abd)
names(bnr2)
#>   [1] "S8"   "S2"   "S3"   "S4"   "S6"   "S13"  "S1"   "S5"   "S10"  "S14" 
#>  [11] "S9"   "S15"  "S21"  "S17"  "S22"  "S39"  "S12"  "S26"  "S25"  "S11" 
#>  [21] "S38"  "S19"  "S20"  "S29"  "S37"  "S41"  "S27"  "S16"  "S45"  "S23" 
#>  [31] "S43"  "S33"  "S36"  "S24"  "S47"  "S49"  "S52"  "S31"  "S32"  "S46" 
#>  [41] "S67"  "S58"  "S50"  "S71"  "S54"  "S35"  "S61"  "S18"  "S34"  "S68" 
#>  [51] "S7"   "S69"  "S64"  "S72"  "S62"  "S48"  "S70"  "S59"  "S78"  "S51" 
#>  [61] "S42"  "S80"  "S53"  "S73"  "S88"  "S100" "S84"  "S77"  "S55"  "S56" 
#>  [71] "S30"  "S112" "S135" "S136" "S137" "S138" "S139" "S140" "S141" "S142"
#>  [81] "S143" "S144" "S145" "S146" "S147" "S148" "S149" "S150" "S151" "S152"
#>  [91] "S153" "S154" "S155" "S156" "S157" "S158" "S159" "S160" "S161" "S162"
#> [101] "S163" "S92"  "S74"  "S114" "S90"  "S91"  "S107" "S119" "S120" "S121"
#> [111] "S125" "S127" "S128" "S131" "S132" "S133" "S134" "S93"  "S96"  "S98" 
#> [121] "S85"  "S83"  "S113" "S115" "S117" "S102" "S103" "S108" "S122" "S123"
#> [131] "S124" "S126" "S129" "S130" "S89"  "S94"  "S95"  "S97"  "S101" "S110"
#> [141] "S111" "S81"  "S116" "S118" "S104" "S105" "S106" "S63"  "S99"  "S87" 
#> [151] "S109" "S60"  "S75"  "S82"  "S76"  "S79"  "S86"  "S57"  "S65"  "S66" 
#> [161] "S44"  "S28"  "S40"