
Fast (flexible and friendly) statistical functions (mainly from collapse) for matrix-like and data frame objects
Source:R/fast_functions.R
fstat_functions.Rd
The fast statistical function, or fast-flexible-friendly
statistical functions are prefixed with "f". These vectorized functions
supersede the no-f functions, bringing the capacity to work smoothly on
matrix-like and data frame objects. Most of them are defined in the
{collapse} package
For instance, base mean()
operates on a vector, but not on a data frame. A
matrix is recognized as a vector and a single mean is returned. On, the
contrary, fmean()
calculates one mean per column. It does the same for a
data frame, and it does so usually quicker than base functions. No need for
colMeans()
, a separate function to do so. Fast statistical functions also
recognize grouping with fgroup_by()
, sgroup_by()
or group_by()
and
calculate the mean by group in this case. Again, no need for a different
function like stats::ave()
.
Finally, these functions also have a TRA=
argument that computes, for
instance, if TRA = "-"
, (x f(x))
very efficiently (for instance to
calculate residuals by subtracting the mean).
Another particularity is the na.rm=
argument that is TRUE
by default,
while it is FALSE
by default for mean()
.
These are generic functions with methods for matrix, data.frame,
grouped_df and a default method used for simple numeric vectors. Most
of them are defined in the {collapse} package, but there are a couple more
here, together with an alternate syntax to replace TRA=
with %_f%
.
Usage
list_fstat_functions()
fn(x, ...)
fna(x, ...)
x %replacef% expr
x %replace_fillf% expr
x %-f% expr
x %+f% expr
x %-+f% expr
x %/f% expr
x %/*100f% expr
x %*f% expr
x %modf% expr
x %-modf% expr
Arguments
- x
A numeric vector, matrix, data frame or grouped data frame (class 'grouped_df').
- ...
Further arguments passed to the method, like
w=
, a numeric vector of (non-negative) weights that may contain missing values, orTRA=
, a quoted operator indicating the transformation to perform:"replace"
to get a vector of same size ofx
with results,"replace_fill"
idem but also replace missing data,"-"
to subtract,"+"
to add,"-+"
to subtract and add the global statistic,"/"
to divide,"%"
to divide and multiply by 100 (percent),"*"
to multiply,"%%"
to take the modulus (remainder from division by the statistic) and"-%%"
to subtract modulus ('i.e., to floor the data by the statistic), seecollapse::TRA()
. Alsona.rm=
, a logical indicating if we skip missing values inx
ifTRUE
(by default). IfFALSE
for any missing data inx
,NA
is returned. For details and other arguments, see the corresponding help page in the collapse package.- expr
The expression to evaluate as RHS of the
%__f%
operators.
Value
The number of all observations for fn()
or the number of
missing observations for fna()
. list_fstat_functions()
returns a list of
all the known fast statistical functions.
Note
The page collapse::fast-statistical-functions gives more details.
fn()
count all observations, including NA
s, fna()
counts
only NA
s, where fnobs()
counts non-missing observations.
Instead of TRA=
one can use the %__f%
functions where __
is replace
,
replace_fill
, -
, +
, -+
, /
, /*100
for TRA="%"
, *
, mod
for
TRA="%%"
, or -mod
for TRA="-%%"
. See example.
Examples
library(collapse)
#> collapse 2.0.13, see ?`collapse-package` or ?`collapse-documentation`
#>
#> Attaching package: ‘collapse’
#> The following object is masked from ‘package:data.table’:
#>
#> fdroplevels
#> The following object is masked from ‘package:stats’:
#>
#> D
data(iris)
iris_num <- iris[, -5] # Only numerical variables
mean(iris$Sepal.Length) # OK, but mean(iris_num does not work)
#> [1] 5.843333
colMeans(iris_num)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 5.843333 3.057333 3.758000 1.199333
# Same
fmean(iris_num)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 5.843333 3.057333 3.758000 1.199333
# Idem, but mean by group for all 4 numerical variables
iris |> fgroup_by(Species) |> fmean()
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 5.006 3.428 1.462 0.246
#> 2 versicolor 5.936 2.770 4.260 1.326
#> 3 virginica 6.588 2.974 5.552 2.026
# Residuals (x - mean(x)) by group
iris |> fgroup_by(Species) |> fmean(TRA = "-")
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 0.094 0.072 -0.062 -0.046
#> 2 setosa -0.106 -0.428 -0.062 -0.046
#> 3 setosa -0.306 -0.228 -0.162 -0.046
#> 4 setosa -0.406 -0.328 0.038 -0.046
#> 5 setosa -0.006 0.172 -0.062 -0.046
#> 6 setosa 0.394 0.472 0.238 0.154
#> 7 setosa -0.406 -0.028 -0.062 0.054
#> 8 setosa -0.006 -0.028 0.038 -0.046
#> 9 setosa -0.606 -0.528 -0.062 -0.046
#> 10 setosa -0.106 -0.328 0.038 -0.146
#> 11 setosa 0.394 0.272 0.038 -0.046
#> 12 setosa -0.206 -0.028 0.138 -0.046
#> 13 setosa -0.206 -0.428 -0.062 -0.146
#> 14 setosa -0.706 -0.428 -0.362 -0.146
#> 15 setosa 0.794 0.572 -0.262 -0.046
#> 16 setosa 0.694 0.972 0.038 0.154
#> 17 setosa 0.394 0.472 -0.162 0.154
#> 18 setosa 0.094 0.072 -0.062 0.054
#> 19 setosa 0.694 0.372 0.238 0.054
#> 20 setosa 0.094 0.372 0.038 0.054
#> 21 setosa 0.394 -0.028 0.238 -0.046
#> 22 setosa 0.094 0.272 0.038 0.154
#> 23 setosa -0.406 0.172 -0.462 -0.046
#> 24 setosa 0.094 -0.128 0.238 0.254
#> 25 setosa -0.206 -0.028 0.438 -0.046
#> 26 setosa -0.006 -0.428 0.138 -0.046
#> 27 setosa -0.006 -0.028 0.138 0.154
#> 28 setosa 0.194 0.072 0.038 -0.046
#> 29 setosa 0.194 -0.028 -0.062 -0.046
#> 30 setosa -0.306 -0.228 0.138 -0.046
#> 31 setosa -0.206 -0.328 0.138 -0.046
#> 32 setosa 0.394 -0.028 0.038 0.154
#> 33 setosa 0.194 0.672 0.038 -0.146
#> 34 setosa 0.494 0.772 -0.062 -0.046
#> 35 setosa -0.106 -0.328 0.038 -0.046
#> 36 setosa -0.006 -0.228 -0.262 -0.046
#> 37 setosa 0.494 0.072 -0.162 -0.046
#> 38 setosa -0.106 0.172 -0.062 -0.146
#> 39 setosa -0.606 -0.428 -0.162 -0.046
#> 40 setosa 0.094 -0.028 0.038 -0.046
#> 41 setosa -0.006 0.072 -0.162 0.054
#> 42 setosa -0.506 -1.128 -0.162 0.054
#> 43 setosa -0.606 -0.228 -0.162 -0.046
#> 44 setosa -0.006 0.072 0.138 0.354
#> 45 setosa 0.094 0.372 0.438 0.154
#> 46 setosa -0.206 -0.428 -0.062 0.054
#> 47 setosa 0.094 0.372 0.138 -0.046
#> 48 setosa -0.406 -0.228 -0.062 -0.046
#> 49 setosa 0.294 0.272 0.038 -0.046
#> 50 setosa -0.006 -0.128 -0.062 -0.046
#> 51 versicolor 1.064 0.430 0.440 0.074
#> 52 versicolor 0.464 0.430 0.240 0.174
#> 53 versicolor 0.964 0.330 0.640 0.174
#> 54 versicolor -0.436 -0.470 -0.260 -0.026
#> 55 versicolor 0.564 0.030 0.340 0.174
#> 56 versicolor -0.236 0.030 0.240 -0.026
#> 57 versicolor 0.364 0.530 0.440 0.274
#> 58 versicolor -1.036 -0.370 -0.960 -0.326
#> 59 versicolor 0.664 0.130 0.340 -0.026
#> 60 versicolor -0.736 -0.070 -0.360 0.074
#> 61 versicolor -0.936 -0.770 -0.760 -0.326
#> 62 versicolor -0.036 0.230 -0.060 0.174
#> 63 versicolor 0.064 -0.570 -0.260 -0.326
#> 64 versicolor 0.164 0.130 0.440 0.074
#> 65 versicolor -0.336 0.130 -0.660 -0.026
#> 66 versicolor 0.764 0.330 0.140 0.074
#> 67 versicolor -0.336 0.230 0.240 0.174
#> 68 versicolor -0.136 -0.070 -0.160 -0.326
#> 69 versicolor 0.264 -0.570 0.240 0.174
#> 70 versicolor -0.336 -0.270 -0.360 -0.226
#> 71 versicolor -0.036 0.430 0.540 0.474
#> 72 versicolor 0.164 0.030 -0.260 -0.026
#> 73 versicolor 0.364 -0.270 0.640 0.174
#> 74 versicolor 0.164 0.030 0.440 -0.126
#> 75 versicolor 0.464 0.130 0.040 -0.026
#> 76 versicolor 0.664 0.230 0.140 0.074
#> 77 versicolor 0.864 0.030 0.540 0.074
#> 78 versicolor 0.764 0.230 0.740 0.374
#> 79 versicolor 0.064 0.130 0.240 0.174
#> 80 versicolor -0.236 -0.170 -0.760 -0.326
#> 81 versicolor -0.436 -0.370 -0.460 -0.226
#> 82 versicolor -0.436 -0.370 -0.560 -0.326
#> 83 versicolor -0.136 -0.070 -0.360 -0.126
#> 84 versicolor 0.064 -0.070 0.840 0.274
#> 85 versicolor -0.536 0.230 0.240 0.174
#> 86 versicolor 0.064 0.630 0.240 0.274
#> 87 versicolor 0.764 0.330 0.440 0.174
#> 88 versicolor 0.364 -0.470 0.140 -0.026
#> 89 versicolor -0.336 0.230 -0.160 -0.026
#> 90 versicolor -0.436 -0.270 -0.260 -0.026
#> 91 versicolor -0.436 -0.170 0.140 -0.126
#> 92 versicolor 0.164 0.230 0.340 0.074
#> 93 versicolor -0.136 -0.170 -0.260 -0.126
#> 94 versicolor -0.936 -0.470 -0.960 -0.326
#> 95 versicolor -0.336 -0.070 -0.060 -0.026
#> 96 versicolor -0.236 0.230 -0.060 -0.126
#> 97 versicolor -0.236 0.130 -0.060 -0.026
#> 98 versicolor 0.264 0.130 0.040 -0.026
#> 99 versicolor -0.836 -0.270 -1.260 -0.226
#> 100 versicolor -0.236 0.030 -0.160 -0.026
#> 101 virginica -0.288 0.326 0.448 0.474
#> 102 virginica -0.788 -0.274 -0.452 -0.126
#> 103 virginica 0.512 0.026 0.348 0.074
#> 104 virginica -0.288 -0.074 0.048 -0.226
#> 105 virginica -0.088 0.026 0.248 0.174
#> 106 virginica 1.012 0.026 1.048 0.074
#> 107 virginica -1.688 -0.474 -1.052 -0.326
#> 108 virginica 0.712 -0.074 0.748 -0.226
#> 109 virginica 0.112 -0.474 0.248 -0.226
#> 110 virginica 0.612 0.626 0.548 0.474
#> 111 virginica -0.088 0.226 -0.452 -0.026
#> 112 virginica -0.188 -0.274 -0.252 -0.126
#> 113 virginica 0.212 0.026 -0.052 0.074
#> 114 virginica -0.888 -0.474 -0.552 -0.026
#> 115 virginica -0.788 -0.174 -0.452 0.374
#> 116 virginica -0.188 0.226 -0.252 0.274
#> 117 virginica -0.088 0.026 -0.052 -0.226
#> 118 virginica 1.112 0.826 1.148 0.174
#> 119 virginica 1.112 -0.374 1.348 0.274
#> 120 virginica -0.588 -0.774 -0.552 -0.526
#> 121 virginica 0.312 0.226 0.148 0.274
#> 122 virginica -0.988 -0.174 -0.652 -0.026
#> 123 virginica 1.112 -0.174 1.148 -0.026
#> 124 virginica -0.288 -0.274 -0.652 -0.226
#> 125 virginica 0.112 0.326 0.148 0.074
#> 126 virginica 0.612 0.226 0.448 -0.226
#> 127 virginica -0.388 -0.174 -0.752 -0.226
#> 128 virginica -0.488 0.026 -0.652 -0.226
#> 129 virginica -0.188 -0.174 0.048 0.074
#> 130 virginica 0.612 0.026 0.248 -0.426
#> 131 virginica 0.812 -0.174 0.548 -0.126
#> 132 virginica 1.312 0.826 0.848 -0.026
#> 133 virginica -0.188 -0.174 0.048 0.174
#> 134 virginica -0.288 -0.174 -0.452 -0.526
#> 135 virginica -0.488 -0.374 0.048 -0.626
#> 136 virginica 1.112 0.026 0.548 0.274
#> 137 virginica -0.288 0.426 0.048 0.374
#> 138 virginica -0.188 0.126 -0.052 -0.226
#> 139 virginica -0.588 0.026 -0.752 -0.226
#> 140 virginica 0.312 0.126 -0.152 0.074
#> 141 virginica 0.112 0.126 0.048 0.374
#> 142 virginica 0.312 0.126 -0.452 0.274
#> 143 virginica -0.788 -0.274 -0.452 -0.126
#> 144 virginica 0.212 0.226 0.348 0.274
#> 145 virginica 0.112 0.326 0.148 0.474
#> 146 virginica 0.112 0.026 -0.352 0.274
#> 147 virginica -0.288 -0.474 -0.552 -0.126
#> 148 virginica -0.088 0.026 -0.352 -0.026
#> 149 virginica -0.388 0.426 -0.152 0.274
#> 150 virginica -0.688 0.026 -0.452 -0.226
#>
#> Grouped by: Species [3 | 50 (0)]
# The same calculation, in a little bit more expressive way
iris |> fgroup_by(Species) %-f% fmean()
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 0.094 0.072 -0.062 -0.046
#> 2 setosa -0.106 -0.428 -0.062 -0.046
#> 3 setosa -0.306 -0.228 -0.162 -0.046
#> 4 setosa -0.406 -0.328 0.038 -0.046
#> 5 setosa -0.006 0.172 -0.062 -0.046
#> 6 setosa 0.394 0.472 0.238 0.154
#> 7 setosa -0.406 -0.028 -0.062 0.054
#> 8 setosa -0.006 -0.028 0.038 -0.046
#> 9 setosa -0.606 -0.528 -0.062 -0.046
#> 10 setosa -0.106 -0.328 0.038 -0.146
#> 11 setosa 0.394 0.272 0.038 -0.046
#> 12 setosa -0.206 -0.028 0.138 -0.046
#> 13 setosa -0.206 -0.428 -0.062 -0.146
#> 14 setosa -0.706 -0.428 -0.362 -0.146
#> 15 setosa 0.794 0.572 -0.262 -0.046
#> 16 setosa 0.694 0.972 0.038 0.154
#> 17 setosa 0.394 0.472 -0.162 0.154
#> 18 setosa 0.094 0.072 -0.062 0.054
#> 19 setosa 0.694 0.372 0.238 0.054
#> 20 setosa 0.094 0.372 0.038 0.054
#> 21 setosa 0.394 -0.028 0.238 -0.046
#> 22 setosa 0.094 0.272 0.038 0.154
#> 23 setosa -0.406 0.172 -0.462 -0.046
#> 24 setosa 0.094 -0.128 0.238 0.254
#> 25 setosa -0.206 -0.028 0.438 -0.046
#> 26 setosa -0.006 -0.428 0.138 -0.046
#> 27 setosa -0.006 -0.028 0.138 0.154
#> 28 setosa 0.194 0.072 0.038 -0.046
#> 29 setosa 0.194 -0.028 -0.062 -0.046
#> 30 setosa -0.306 -0.228 0.138 -0.046
#> 31 setosa -0.206 -0.328 0.138 -0.046
#> 32 setosa 0.394 -0.028 0.038 0.154
#> 33 setosa 0.194 0.672 0.038 -0.146
#> 34 setosa 0.494 0.772 -0.062 -0.046
#> 35 setosa -0.106 -0.328 0.038 -0.046
#> 36 setosa -0.006 -0.228 -0.262 -0.046
#> 37 setosa 0.494 0.072 -0.162 -0.046
#> 38 setosa -0.106 0.172 -0.062 -0.146
#> 39 setosa -0.606 -0.428 -0.162 -0.046
#> 40 setosa 0.094 -0.028 0.038 -0.046
#> 41 setosa -0.006 0.072 -0.162 0.054
#> 42 setosa -0.506 -1.128 -0.162 0.054
#> 43 setosa -0.606 -0.228 -0.162 -0.046
#> 44 setosa -0.006 0.072 0.138 0.354
#> 45 setosa 0.094 0.372 0.438 0.154
#> 46 setosa -0.206 -0.428 -0.062 0.054
#> 47 setosa 0.094 0.372 0.138 -0.046
#> 48 setosa -0.406 -0.228 -0.062 -0.046
#> 49 setosa 0.294 0.272 0.038 -0.046
#> 50 setosa -0.006 -0.128 -0.062 -0.046
#> 51 versicolor 1.064 0.430 0.440 0.074
#> 52 versicolor 0.464 0.430 0.240 0.174
#> 53 versicolor 0.964 0.330 0.640 0.174
#> 54 versicolor -0.436 -0.470 -0.260 -0.026
#> 55 versicolor 0.564 0.030 0.340 0.174
#> 56 versicolor -0.236 0.030 0.240 -0.026
#> 57 versicolor 0.364 0.530 0.440 0.274
#> 58 versicolor -1.036 -0.370 -0.960 -0.326
#> 59 versicolor 0.664 0.130 0.340 -0.026
#> 60 versicolor -0.736 -0.070 -0.360 0.074
#> 61 versicolor -0.936 -0.770 -0.760 -0.326
#> 62 versicolor -0.036 0.230 -0.060 0.174
#> 63 versicolor 0.064 -0.570 -0.260 -0.326
#> 64 versicolor 0.164 0.130 0.440 0.074
#> 65 versicolor -0.336 0.130 -0.660 -0.026
#> 66 versicolor 0.764 0.330 0.140 0.074
#> 67 versicolor -0.336 0.230 0.240 0.174
#> 68 versicolor -0.136 -0.070 -0.160 -0.326
#> 69 versicolor 0.264 -0.570 0.240 0.174
#> 70 versicolor -0.336 -0.270 -0.360 -0.226
#> 71 versicolor -0.036 0.430 0.540 0.474
#> 72 versicolor 0.164 0.030 -0.260 -0.026
#> 73 versicolor 0.364 -0.270 0.640 0.174
#> 74 versicolor 0.164 0.030 0.440 -0.126
#> 75 versicolor 0.464 0.130 0.040 -0.026
#> 76 versicolor 0.664 0.230 0.140 0.074
#> 77 versicolor 0.864 0.030 0.540 0.074
#> 78 versicolor 0.764 0.230 0.740 0.374
#> 79 versicolor 0.064 0.130 0.240 0.174
#> 80 versicolor -0.236 -0.170 -0.760 -0.326
#> 81 versicolor -0.436 -0.370 -0.460 -0.226
#> 82 versicolor -0.436 -0.370 -0.560 -0.326
#> 83 versicolor -0.136 -0.070 -0.360 -0.126
#> 84 versicolor 0.064 -0.070 0.840 0.274
#> 85 versicolor -0.536 0.230 0.240 0.174
#> 86 versicolor 0.064 0.630 0.240 0.274
#> 87 versicolor 0.764 0.330 0.440 0.174
#> 88 versicolor 0.364 -0.470 0.140 -0.026
#> 89 versicolor -0.336 0.230 -0.160 -0.026
#> 90 versicolor -0.436 -0.270 -0.260 -0.026
#> 91 versicolor -0.436 -0.170 0.140 -0.126
#> 92 versicolor 0.164 0.230 0.340 0.074
#> 93 versicolor -0.136 -0.170 -0.260 -0.126
#> 94 versicolor -0.936 -0.470 -0.960 -0.326
#> 95 versicolor -0.336 -0.070 -0.060 -0.026
#> 96 versicolor -0.236 0.230 -0.060 -0.126
#> 97 versicolor -0.236 0.130 -0.060 -0.026
#> 98 versicolor 0.264 0.130 0.040 -0.026
#> 99 versicolor -0.836 -0.270 -1.260 -0.226
#> 100 versicolor -0.236 0.030 -0.160 -0.026
#> 101 virginica -0.288 0.326 0.448 0.474
#> 102 virginica -0.788 -0.274 -0.452 -0.126
#> 103 virginica 0.512 0.026 0.348 0.074
#> 104 virginica -0.288 -0.074 0.048 -0.226
#> 105 virginica -0.088 0.026 0.248 0.174
#> 106 virginica 1.012 0.026 1.048 0.074
#> 107 virginica -1.688 -0.474 -1.052 -0.326
#> 108 virginica 0.712 -0.074 0.748 -0.226
#> 109 virginica 0.112 -0.474 0.248 -0.226
#> 110 virginica 0.612 0.626 0.548 0.474
#> 111 virginica -0.088 0.226 -0.452 -0.026
#> 112 virginica -0.188 -0.274 -0.252 -0.126
#> 113 virginica 0.212 0.026 -0.052 0.074
#> 114 virginica -0.888 -0.474 -0.552 -0.026
#> 115 virginica -0.788 -0.174 -0.452 0.374
#> 116 virginica -0.188 0.226 -0.252 0.274
#> 117 virginica -0.088 0.026 -0.052 -0.226
#> 118 virginica 1.112 0.826 1.148 0.174
#> 119 virginica 1.112 -0.374 1.348 0.274
#> 120 virginica -0.588 -0.774 -0.552 -0.526
#> 121 virginica 0.312 0.226 0.148 0.274
#> 122 virginica -0.988 -0.174 -0.652 -0.026
#> 123 virginica 1.112 -0.174 1.148 -0.026
#> 124 virginica -0.288 -0.274 -0.652 -0.226
#> 125 virginica 0.112 0.326 0.148 0.074
#> 126 virginica 0.612 0.226 0.448 -0.226
#> 127 virginica -0.388 -0.174 -0.752 -0.226
#> 128 virginica -0.488 0.026 -0.652 -0.226
#> 129 virginica -0.188 -0.174 0.048 0.074
#> 130 virginica 0.612 0.026 0.248 -0.426
#> 131 virginica 0.812 -0.174 0.548 -0.126
#> 132 virginica 1.312 0.826 0.848 -0.026
#> 133 virginica -0.188 -0.174 0.048 0.174
#> 134 virginica -0.288 -0.174 -0.452 -0.526
#> 135 virginica -0.488 -0.374 0.048 -0.626
#> 136 virginica 1.112 0.026 0.548 0.274
#> 137 virginica -0.288 0.426 0.048 0.374
#> 138 virginica -0.188 0.126 -0.052 -0.226
#> 139 virginica -0.588 0.026 -0.752 -0.226
#> 140 virginica 0.312 0.126 -0.152 0.074
#> 141 virginica 0.112 0.126 0.048 0.374
#> 142 virginica 0.312 0.126 -0.452 0.274
#> 143 virginica -0.788 -0.274 -0.452 -0.126
#> 144 virginica 0.212 0.226 0.348 0.274
#> 145 virginica 0.112 0.326 0.148 0.474
#> 146 virginica 0.112 0.026 -0.352 0.274
#> 147 virginica -0.288 -0.474 -0.552 -0.126
#> 148 virginica -0.088 0.026 -0.352 -0.026
#> 149 virginica -0.388 0.426 -0.152 0.274
#> 150 virginica -0.688 0.026 -0.452 -0.226
#>
#> Grouped by: Species [3 | 50 (0)]
# or:
iris_num %-f% fmean(g = iris$Species)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 0.094 0.072 -0.062 -0.046
#> 2 -0.106 -0.428 -0.062 -0.046
#> 3 -0.306 -0.228 -0.162 -0.046
#> 4 -0.406 -0.328 0.038 -0.046
#> 5 -0.006 0.172 -0.062 -0.046
#> 6 0.394 0.472 0.238 0.154
#> 7 -0.406 -0.028 -0.062 0.054
#> 8 -0.006 -0.028 0.038 -0.046
#> 9 -0.606 -0.528 -0.062 -0.046
#> 10 -0.106 -0.328 0.038 -0.146
#> 11 0.394 0.272 0.038 -0.046
#> 12 -0.206 -0.028 0.138 -0.046
#> 13 -0.206 -0.428 -0.062 -0.146
#> 14 -0.706 -0.428 -0.362 -0.146
#> 15 0.794 0.572 -0.262 -0.046
#> 16 0.694 0.972 0.038 0.154
#> 17 0.394 0.472 -0.162 0.154
#> 18 0.094 0.072 -0.062 0.054
#> 19 0.694 0.372 0.238 0.054
#> 20 0.094 0.372 0.038 0.054
#> 21 0.394 -0.028 0.238 -0.046
#> 22 0.094 0.272 0.038 0.154
#> 23 -0.406 0.172 -0.462 -0.046
#> 24 0.094 -0.128 0.238 0.254
#> 25 -0.206 -0.028 0.438 -0.046
#> 26 -0.006 -0.428 0.138 -0.046
#> 27 -0.006 -0.028 0.138 0.154
#> 28 0.194 0.072 0.038 -0.046
#> 29 0.194 -0.028 -0.062 -0.046
#> 30 -0.306 -0.228 0.138 -0.046
#> 31 -0.206 -0.328 0.138 -0.046
#> 32 0.394 -0.028 0.038 0.154
#> 33 0.194 0.672 0.038 -0.146
#> 34 0.494 0.772 -0.062 -0.046
#> 35 -0.106 -0.328 0.038 -0.046
#> 36 -0.006 -0.228 -0.262 -0.046
#> 37 0.494 0.072 -0.162 -0.046
#> 38 -0.106 0.172 -0.062 -0.146
#> 39 -0.606 -0.428 -0.162 -0.046
#> 40 0.094 -0.028 0.038 -0.046
#> 41 -0.006 0.072 -0.162 0.054
#> 42 -0.506 -1.128 -0.162 0.054
#> 43 -0.606 -0.228 -0.162 -0.046
#> 44 -0.006 0.072 0.138 0.354
#> 45 0.094 0.372 0.438 0.154
#> 46 -0.206 -0.428 -0.062 0.054
#> 47 0.094 0.372 0.138 -0.046
#> 48 -0.406 -0.228 -0.062 -0.046
#> 49 0.294 0.272 0.038 -0.046
#> 50 -0.006 -0.128 -0.062 -0.046
#> 51 1.064 0.430 0.440 0.074
#> 52 0.464 0.430 0.240 0.174
#> 53 0.964 0.330 0.640 0.174
#> 54 -0.436 -0.470 -0.260 -0.026
#> 55 0.564 0.030 0.340 0.174
#> 56 -0.236 0.030 0.240 -0.026
#> 57 0.364 0.530 0.440 0.274
#> 58 -1.036 -0.370 -0.960 -0.326
#> 59 0.664 0.130 0.340 -0.026
#> 60 -0.736 -0.070 -0.360 0.074
#> 61 -0.936 -0.770 -0.760 -0.326
#> 62 -0.036 0.230 -0.060 0.174
#> 63 0.064 -0.570 -0.260 -0.326
#> 64 0.164 0.130 0.440 0.074
#> 65 -0.336 0.130 -0.660 -0.026
#> 66 0.764 0.330 0.140 0.074
#> 67 -0.336 0.230 0.240 0.174
#> 68 -0.136 -0.070 -0.160 -0.326
#> 69 0.264 -0.570 0.240 0.174
#> 70 -0.336 -0.270 -0.360 -0.226
#> 71 -0.036 0.430 0.540 0.474
#> 72 0.164 0.030 -0.260 -0.026
#> 73 0.364 -0.270 0.640 0.174
#> 74 0.164 0.030 0.440 -0.126
#> 75 0.464 0.130 0.040 -0.026
#> 76 0.664 0.230 0.140 0.074
#> 77 0.864 0.030 0.540 0.074
#> 78 0.764 0.230 0.740 0.374
#> 79 0.064 0.130 0.240 0.174
#> 80 -0.236 -0.170 -0.760 -0.326
#> 81 -0.436 -0.370 -0.460 -0.226
#> 82 -0.436 -0.370 -0.560 -0.326
#> 83 -0.136 -0.070 -0.360 -0.126
#> 84 0.064 -0.070 0.840 0.274
#> 85 -0.536 0.230 0.240 0.174
#> 86 0.064 0.630 0.240 0.274
#> 87 0.764 0.330 0.440 0.174
#> 88 0.364 -0.470 0.140 -0.026
#> 89 -0.336 0.230 -0.160 -0.026
#> 90 -0.436 -0.270 -0.260 -0.026
#> 91 -0.436 -0.170 0.140 -0.126
#> 92 0.164 0.230 0.340 0.074
#> 93 -0.136 -0.170 -0.260 -0.126
#> 94 -0.936 -0.470 -0.960 -0.326
#> 95 -0.336 -0.070 -0.060 -0.026
#> 96 -0.236 0.230 -0.060 -0.126
#> 97 -0.236 0.130 -0.060 -0.026
#> 98 0.264 0.130 0.040 -0.026
#> 99 -0.836 -0.270 -1.260 -0.226
#> 100 -0.236 0.030 -0.160 -0.026
#> 101 -0.288 0.326 0.448 0.474
#> 102 -0.788 -0.274 -0.452 -0.126
#> 103 0.512 0.026 0.348 0.074
#> 104 -0.288 -0.074 0.048 -0.226
#> 105 -0.088 0.026 0.248 0.174
#> 106 1.012 0.026 1.048 0.074
#> 107 -1.688 -0.474 -1.052 -0.326
#> 108 0.712 -0.074 0.748 -0.226
#> 109 0.112 -0.474 0.248 -0.226
#> 110 0.612 0.626 0.548 0.474
#> 111 -0.088 0.226 -0.452 -0.026
#> 112 -0.188 -0.274 -0.252 -0.126
#> 113 0.212 0.026 -0.052 0.074
#> 114 -0.888 -0.474 -0.552 -0.026
#> 115 -0.788 -0.174 -0.452 0.374
#> 116 -0.188 0.226 -0.252 0.274
#> 117 -0.088 0.026 -0.052 -0.226
#> 118 1.112 0.826 1.148 0.174
#> 119 1.112 -0.374 1.348 0.274
#> 120 -0.588 -0.774 -0.552 -0.526
#> 121 0.312 0.226 0.148 0.274
#> 122 -0.988 -0.174 -0.652 -0.026
#> 123 1.112 -0.174 1.148 -0.026
#> 124 -0.288 -0.274 -0.652 -0.226
#> 125 0.112 0.326 0.148 0.074
#> 126 0.612 0.226 0.448 -0.226
#> 127 -0.388 -0.174 -0.752 -0.226
#> 128 -0.488 0.026 -0.652 -0.226
#> 129 -0.188 -0.174 0.048 0.074
#> 130 0.612 0.026 0.248 -0.426
#> 131 0.812 -0.174 0.548 -0.126
#> 132 1.312 0.826 0.848 -0.026
#> 133 -0.188 -0.174 0.048 0.174
#> 134 -0.288 -0.174 -0.452 -0.526
#> 135 -0.488 -0.374 0.048 -0.626
#> 136 1.112 0.026 0.548 0.274
#> 137 -0.288 0.426 0.048 0.374
#> 138 -0.188 0.126 -0.052 -0.226
#> 139 -0.588 0.026 -0.752 -0.226
#> 140 0.312 0.126 -0.152 0.074
#> 141 0.112 0.126 0.048 0.374
#> 142 0.312 0.126 -0.452 0.274
#> 143 -0.788 -0.274 -0.452 -0.126
#> 144 0.212 0.226 0.348 0.274
#> 145 0.112 0.326 0.148 0.474
#> 146 0.112 0.026 -0.352 0.274
#> 147 -0.288 -0.474 -0.552 -0.126
#> 148 -0.088 0.026 -0.352 -0.026
#> 149 -0.388 0.426 -0.152 0.274
#> 150 -0.688 0.026 -0.452 -0.226