loading...

[Deprecated]

These function are deprecated to the benefit of the functions whose name ends with an underscore _ (e.g., select() -> svTidy::select_()) in the svTidy package.

The Tidyverse defines a coherent set of tools to manipulate data frames that use a non-standard evaluation and sometimes require extra care. These functions, like dplyr::mutate() or dplyr::summarise() are defined in the {dplyr} and {tidyr} packages. When using variants, like {dtplyr} for data.frame objects, or {dbplyr} to work with external databases, successive commands in a pipeline are pooled together but not computed. One has to dplyr::collect() the result to get its final form. Most of the tidy functions that have their "speedy" counterpart prefixed with "s" are listed withlist_tidy_functions(). Their main usages are (excluding less used arguments, or those that are not compatibles with the speedy "s" counterpart functions):

  • group_by(.data, ...)

  • ungroup(.data)

  • rename(.data, ...)

  • rename_with(.data, .fn, .cols = everything(), ...)

  • filter(.data, ...)

  • select(.data, ...)

  • mutate(.data, ..., .keep = "all")

  • transmute(.data, ...)

  • summarise(.data, ...)

  • full_join(x, y, by = NULL, suffix = c(".x", ".y"), copy = FALSE, ...)

  • left_join(x, y, by = NULL, suffix = c(".x", ".y"), copy = FALSE, ...)

  • right_join(x, y, by = NULL, suffix = c(".x", ".y"), copy = FALSE, ...)

  • inner_join(x, y, by = NULL, suffix = c(".x", ".y"), copy = FALSE, ...)

  • bind_rows(..., .id = NULL)

  • bind_cols(..., .name_repair = c("unique", "universal", "check_unique", "minimal"))

  • arrange(.data, ..., .by_group = FALSE)

  • count(x, ..., wt = NULL, sort = FALSE, name = NULL)

  • tally(x, wt = NULL, sort = FALSE, name = NULL)

  • add_count(x, ..., wt = NULL, sort = FALSE, name = NULL)

  • add_tally(x, wt = NULL, sort = FALSE, name = NULL)

  • pull(.data, var = -1, name = NULL)

  • distinct(.data, ..., .keep_all = FALSE)

  • drop_na(data, ...)

  • replace_na(data, replace)

  • pivot_longer(data, cols, names_to = "name", values_to = "value")

  • pivot_wider(data, names_from = name, values_from = value)

  • uncount(data, weights, .remove = TRUE, .id = NULL)

  • unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

  • separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE)

  • separate_rows(data, ..., sep = "[^[:alnum:].]+", convert = FALSE)

  • fill(data, ..., .direction = c("down", "up", "downup", "updown"))

  • extract(data, col, into, regex = "([[:alnum:]]+)", remove = TRUE, convert = FALSE) plus the functions defined here under.

list_tidy_functions()

filter_ungroup(.data, ...)

mutate_ungroup(.data, ..., .keep = "all")

transmute_ungroup(.data, ...)

Arguments

.data

A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See dplyr::mutate() for more details.

...

Arguments dependent to the context of the function and most of the time, not evaluated in a standard way (cf. the tidyverse approach).

.keep

Which columns to keep. The default is "all", possible values are "used", "unused", or "none" (see dplyr::mutate()).

Value

See corresponding "non-t" function for the full help page with indication of the return values. list_tidy_functions() returns a list of all the tidy(verse) functions that have their speedy "s" counterpart, see speedy_functions.

Note

The help page here is very basic and it aims mainly to list all the tidy functions. For more complete help, see the {dplyr} or {tidyr} packages. From {dplyr}, the slice() and slice_xxx() functions are not added yet because they are not available for {dbplyr}. Also dplyr::anti_join(), dplyr::semi_join() and dplyr::nest_join() are not implemented yet. From {dplyr}, the dplyr::slice() and slice_xxx() functions are not added yet because they are not available for {dbplyr}. From {tidyr} tidyr::expand(), tidyr::chop(), tidyr::unchop(), tidyr::nest(), tidyr::unnest(), tidyr::unnest_longer(), tidyr::unnest_wider(), tidyr::hoist(), tidyr::pack() and tidyr::unpack() are not implemented yet.

See also

collapse::num_vars() to easily keep only numeric columns from a data frame, collapse::fscale() for scaling and centering matrix-like objects and data frames.

Examples

# TODO...