Unified (formula-based) interface version of the linear discriminant
analysis algorithm provided by MASS::lda()
.
mlLda(train, ...)
ml_lda(train, ...)
# S3 method for class 'formula'
mlLda(formula, data, ..., subset, na.action)
# Default S3 method
mlLda(train, response, ...)
# S3 method for class 'mlLda'
predict(
object,
newdata,
type = c("class", "membership", "both", "projection"),
prior = object$prior,
dimension = NULL,
method = c("plug-in", "predictive", "debiased", "cv"),
...
)
a matrix or data frame with predictors.
further arguments passed to MASS::lda()
or its predict()
method (see the corresponding help page).
a formula with left term being the factor variable to predict
and the right term with the list of independent, predictive variables,
separated with a plus sign. If the data frame provided contains only the
dependent and independent variables, one can use the class ~ .
short
version (that one is strongly encouraged). Variables with minus sign are
eliminated. Calculations on variables are possible according to usual
formula convention (possibly protected by using I()
).
a data.frame to use as a training set.
index vector with the cases to define the training set in use (this argument must be named, if provided).
function to specify the action to be taken if NA
s are
found. For ml_lda()
na.fail
is used by default. The calculation is
stopped if there is any NA
in the data. Another option is na.omit
,
where cases with missing values on any required variable are dropped (this
argument must be named, if provided). For the predict()
method, the
default, and most suitable option, is na.exclude
. In that case, rows with
NA
s in newdata=
are excluded from prediction, but reinjected in the
final results so that the number of items is still the same (and in the
same order as newdata=
).
a vector of factor for the classification.
an mlLda object
a new dataset with same conformation as the training set (same variables, except may by the class for classification or dependent variable for regression). Usually a test set, or a new dataset to be predicted.
the type of prediction to return. "class"
by default, the
predicted classes. Other options are "membership"
the membership (a
number between 0 and 1) to the different classes, or "both"
to return
classes and memberships. The type = "projection"
returns a projection
of the individuals in the plane represented by the dimension=
discriminant components.
the prior probabilities of class membership. By default, the prior are obtained from the object and, if they where not changed, correspond to the proportions observed in the training set.
the number of the predictive space to use. If NULL
(the
default) a reasonable value is used. If this is less than min(p, ng-1),
only the first dimension
discriminant components are used (except for
method = "predictive"
), and only those dimensions are returned in x.
"plug-in"
, "predictive"
, "debiased"
, or "cv"
.
"plug-in"
(default) the usual unbiased parameter estimates are used.
With "predictive"
, the parameters are integrated out using a vague prior.
With "debiased"
, an unbiased estimator of the log posterior probabilities
is used. With "cv"
, cross-validation is used instead. If you specify
method = "cv"
then cvpredict()
is used and you cannot provide
newdata=
in that case.
ml_lda()
/mlLda()
creates an mlLda, mlearning object
containing the classifier and a lot of additional metadata used by the
functions and methods you can apply to it like predict()
or
cvpredict()
. In case you want to program new functions or extract
specific components, inspect the "unclassed" object using unclass()
.
mlearning()
, cvpredict()
, confusion()
, also MASS::lda()
that
actually does the classification.
# Prepare data: split into training set (2/3) and test set (1/3)
data("iris", package = "datasets")
train <- c(1:34, 51:83, 101:133)
iris_train <- iris[train, ]
iris_test <- iris[-train, ]
# One case with missing data in train set, and another case in test set
iris_train[1, 1] <- NA
iris_test[25, 2] <- NA
iris_lda <- ml_lda(data = iris_train, Species ~ .)
iris_lda
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Call: mlLda.formula(formula = Species ~ ., data = iris_train)
#> Trained using 99 out of 100 cases:
#> setosa versicolor virginica
#> 33 33 33
summary(iris_lda)
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.formula(formula = Species ~ ., data = iris_train)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response, .args. = ..1)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3333333 0.3333333 0.3333333
#>
#> Group means:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa 5.048485 3.478788 1.478788 0.2454545
#> versicolor 6.027273 2.763636 4.284848 1.3303030
#> virginica 6.642424 2.951515 5.642424 2.0090909
#>
#> Coefficients of linear discriminants:
#> LD1 LD2
#> Sepal.Length 0.731861 0.9595049
#> Sepal.Width 1.522827 -2.8735104
#> Petal.Length -1.992262 -0.1425383
#> Petal.Width -3.021434 -1.5467486
#>
#> Proportion of trace:
#> LD1 LD2
#> 0.9916 0.0084
plot(iris_lda, col = as.numeric(response(iris_lda)) + 1)
# Prediction using a test set
predict(iris_lda, newdata = iris_test) # class (default type)
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa virginica versicolor
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] <NA> versicolor versicolor versicolor versicolor versicolor
#> [31] versicolor versicolor versicolor versicolor virginica virginica
#> [37] virginica virginica virginica virginica virginica virginica
#> [43] virginica virginica virginica virginica virginica virginica
#> [49] virginica virginica
#> Levels: setosa versicolor virginica
predict(iris_lda, type = "membership") # posterior probability
#> setosa versicolor virginica
#> [1,] 1.000000e+00 9.524232e-17 5.937500e-36
#> [2,] 1.000000e+00 1.758123e-18 6.393714e-38
#> [3,] 1.000000e+00 6.513799e-16 2.394500e-34
#> [4,] 1.000000e+00 2.346163e-21 1.932405e-41
#> [5,] 1.000000e+00 7.169015e-20 9.796544e-39
#> [6,] 1.000000e+00 9.874841e-18 2.894202e-36
#> [7,] 1.000000e+00 4.123017e-19 1.318116e-38
#> [8,] 1.000000e+00 9.594213e-15 6.039947e-33
#> [9,] 1.000000e+00 7.873691e-18 2.097109e-37
#> [10,] 1.000000e+00 2.609732e-22 7.255914e-43
#> [11,] 1.000000e+00 8.320901e-18 1.364519e-36
#> [12,] 1.000000e+00 1.211508e-17 2.805560e-37
#> [13,] 1.000000e+00 9.536296e-19 1.465443e-38
#> [14,] 1.000000e+00 6.860245e-28 1.426815e-50
#> [15,] 1.000000e+00 7.475537e-26 1.520329e-46
#> [16,] 1.000000e+00 4.785676e-23 2.483069e-43
#> [17,] 1.000000e+00 9.802813e-20 2.845112e-39
#> [18,] 1.000000e+00 4.605666e-21 5.968926e-41
#> [19,] 1.000000e+00 4.062215e-21 1.190882e-40
#> [20,] 1.000000e+00 1.516425e-18 4.852725e-38
#> [21,] 1.000000e+00 3.056987e-19 4.751958e-38
#> [22,] 1.000000e+00 1.648141e-23 2.642554e-44
#> [23,] 1.000000e+00 1.336747e-13 1.268148e-30
#> [24,] 1.000000e+00 2.003584e-15 3.819817e-33
#> [25,] 1.000000e+00 2.046680e-15 4.351542e-34
#> [26,] 1.000000e+00 5.142538e-16 6.111497e-34
#> [27,] 1.000000e+00 2.391388e-20 2.579476e-40
#> [28,] 1.000000e+00 2.042960e-20 1.273291e-40
#> [29,] 1.000000e+00 4.233371e-16 1.789849e-34
#> [30,] 1.000000e+00 1.249215e-15 4.594423e-34
#> [31,] 1.000000e+00 7.854999e-18 8.037421e-37
#> [32,] 1.000000e+00 7.493326e-26 3.966815e-47
#> [33,] 1.000000e+00 5.492045e-27 1.165689e-48
#> [34,] 6.728356e-18 9.999301e-01 6.988092e-05
#> [35,] 5.384547e-19 9.993600e-01 6.399678e-04
#> [36,] 1.279003e-21 9.971466e-01 2.853444e-03
#> [37,] 1.491199e-21 9.997082e-01 2.917717e-04
#> [38,] 1.949409e-22 9.971777e-01 2.822274e-03
#> [39,] 2.197454e-21 9.980027e-01 1.997293e-03
#> [40,] 2.857474e-21 9.849268e-01 1.507319e-02
#> [41,] 2.377941e-13 9.999999e-01 1.271743e-07
#> [42,] 3.751481e-19 9.999124e-01 8.756011e-05
#> [43,] 8.944958e-20 9.993947e-01 6.053269e-04
#> [44,] 1.386835e-17 9.999987e-01 1.273302e-06
#> [45,] 2.421474e-19 9.992724e-01 7.275660e-04
#> [46,] 1.510041e-17 9.999993e-01 7.449744e-07
#> [47,] 2.233292e-22 9.938387e-01 6.161252e-03
#> [48,] 9.070886e-14 9.999985e-01 1.464089e-06
#> [49,] 5.217489e-17 9.999732e-01 2.680851e-05
#> [50,] 1.674158e-22 9.719677e-01 2.803234e-02
#> [51,] 3.173058e-15 9.999990e-01 9.944224e-07
#> [52,] 9.041922e-27 9.790373e-01 2.096266e-02
#> [53,] 9.465411e-17 9.999970e-01 3.045202e-06
#> [54,] 8.632202e-27 2.075616e-01 7.924384e-01
#> [55,] 2.159399e-16 9.999935e-01 6.542439e-06
#> [56,] 1.428380e-27 8.568276e-01 1.431724e-01
#> [57,] 8.472457e-21 9.995057e-01 4.942844e-04
#> [58,] 2.784802e-17 9.999829e-01 1.705453e-05
#> [59,] 5.450336e-18 9.999472e-01 5.280245e-05
#> [60,] 4.174183e-22 9.989487e-01 1.051274e-03
#> [61,] 4.534883e-26 7.602933e-01 2.397067e-01
#> [62,] 3.385492e-22 9.926904e-01 7.309575e-03
#> [63,] 1.921877e-11 1.000000e+00 1.449145e-08
#> [64,] 6.151650e-17 9.999974e-01 2.647688e-06
#> [65,] 5.418928e-15 9.999997e-01 2.885234e-07
#> [66,] 6.125645e-16 9.999968e-01 3.179623e-06
#> [67,] 3.260056e-50 5.375879e-09 1.000000e+00
#> [68,] 1.534619e-36 9.609211e-04 9.990391e-01
#> [69,] 4.298766e-41 3.843125e-05 9.999616e-01
#> [70,] 1.120396e-36 8.624695e-04 9.991375e-01
#> [71,] 2.665504e-44 1.851447e-06 9.999981e-01
#> [72,] 5.691479e-47 9.683420e-07 9.999990e-01
#> [73,] 1.005543e-31 3.051764e-02 9.694824e-01
#> [74,] 2.170455e-40 1.677627e-04 9.998322e-01
#> [75,] 1.299923e-40 2.936646e-04 9.997063e-01
#> [76,] 6.144375e-45 2.105094e-07 9.999998e-01
#> [77,] 4.613890e-31 1.568862e-02 9.843114e-01
#> [78,] 3.058067e-36 2.171019e-03 9.978290e-01
#> [79,] 8.517422e-38 2.969936e-04 9.997030e-01
#> [80,] 2.876903e-39 2.085888e-04 9.997914e-01
#> [81,] 1.721481e-44 1.154274e-06 9.999988e-01
#> [82,] 4.614421e-39 3.104958e-05 9.999690e-01
#> [83,] 8.029333e-34 5.762455e-03 9.942375e-01
#> [84,] 1.047025e-42 1.368459e-06 9.999986e-01
#> [85,] 7.150283e-57 2.601747e-09 1.000000e+00
#> [86,] 7.847879e-32 2.568989e-01 7.431011e-01
#> [87,] 1.710232e-41 9.095346e-06 9.999909e-01
#> [88,] 5.034775e-36 7.039438e-04 9.992961e-01
#> [89,] 1.297055e-47 1.520685e-06 9.999985e-01
#> [90,] 2.216946e-30 1.336448e-01 8.663552e-01
#> [91,] 5.328521e-38 8.627299e-05 9.999137e-01
#> [92,] 7.527919e-35 2.899037e-03 9.971010e-01
#> [93,] 7.099373e-29 2.331240e-01 7.668760e-01
#> [94,] 1.017544e-28 1.325438e-01 8.674562e-01
#> [95,] 2.315077e-42 1.492841e-05 9.999851e-01
#> [96,] 8.918840e-31 1.250327e-01 8.749673e-01
#> [97,] 2.927915e-40 2.443079e-04 9.997557e-01
#> [98,] 7.078517e-35 5.907724e-04 9.994092e-01
#> [99,] 4.036304e-44 3.685307e-06 9.999963e-01
predict(iris_lda, type = "both") # both class and membership in a list
#> $class
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa versicolor versicolor versicolor
#> [37] versicolor versicolor versicolor versicolor versicolor versicolor
#> [43] versicolor versicolor versicolor versicolor versicolor versicolor
#> [49] versicolor versicolor versicolor versicolor versicolor virginica
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] versicolor versicolor versicolor versicolor versicolor versicolor
#> [67] virginica virginica virginica virginica virginica virginica
#> [73] virginica virginica virginica virginica virginica virginica
#> [79] virginica virginica virginica virginica virginica virginica
#> [85] virginica virginica virginica virginica virginica virginica
#> [91] virginica virginica virginica virginica virginica virginica
#> [97] virginica virginica virginica
#> Levels: setosa versicolor virginica
#>
#> $membership
#> setosa versicolor virginica
#> [1,] 1.000000e+00 9.524232e-17 5.937500e-36
#> [2,] 1.000000e+00 1.758123e-18 6.393714e-38
#> [3,] 1.000000e+00 6.513799e-16 2.394500e-34
#> [4,] 1.000000e+00 2.346163e-21 1.932405e-41
#> [5,] 1.000000e+00 7.169015e-20 9.796544e-39
#> [6,] 1.000000e+00 9.874841e-18 2.894202e-36
#> [7,] 1.000000e+00 4.123017e-19 1.318116e-38
#> [8,] 1.000000e+00 9.594213e-15 6.039947e-33
#> [9,] 1.000000e+00 7.873691e-18 2.097109e-37
#> [10,] 1.000000e+00 2.609732e-22 7.255914e-43
#> [11,] 1.000000e+00 8.320901e-18 1.364519e-36
#> [12,] 1.000000e+00 1.211508e-17 2.805560e-37
#> [13,] 1.000000e+00 9.536296e-19 1.465443e-38
#> [14,] 1.000000e+00 6.860245e-28 1.426815e-50
#> [15,] 1.000000e+00 7.475537e-26 1.520329e-46
#> [16,] 1.000000e+00 4.785676e-23 2.483069e-43
#> [17,] 1.000000e+00 9.802813e-20 2.845112e-39
#> [18,] 1.000000e+00 4.605666e-21 5.968926e-41
#> [19,] 1.000000e+00 4.062215e-21 1.190882e-40
#> [20,] 1.000000e+00 1.516425e-18 4.852725e-38
#> [21,] 1.000000e+00 3.056987e-19 4.751958e-38
#> [22,] 1.000000e+00 1.648141e-23 2.642554e-44
#> [23,] 1.000000e+00 1.336747e-13 1.268148e-30
#> [24,] 1.000000e+00 2.003584e-15 3.819817e-33
#> [25,] 1.000000e+00 2.046680e-15 4.351542e-34
#> [26,] 1.000000e+00 5.142538e-16 6.111497e-34
#> [27,] 1.000000e+00 2.391388e-20 2.579476e-40
#> [28,] 1.000000e+00 2.042960e-20 1.273291e-40
#> [29,] 1.000000e+00 4.233371e-16 1.789849e-34
#> [30,] 1.000000e+00 1.249215e-15 4.594423e-34
#> [31,] 1.000000e+00 7.854999e-18 8.037421e-37
#> [32,] 1.000000e+00 7.493326e-26 3.966815e-47
#> [33,] 1.000000e+00 5.492045e-27 1.165689e-48
#> [34,] 6.728356e-18 9.999301e-01 6.988092e-05
#> [35,] 5.384547e-19 9.993600e-01 6.399678e-04
#> [36,] 1.279003e-21 9.971466e-01 2.853444e-03
#> [37,] 1.491199e-21 9.997082e-01 2.917717e-04
#> [38,] 1.949409e-22 9.971777e-01 2.822274e-03
#> [39,] 2.197454e-21 9.980027e-01 1.997293e-03
#> [40,] 2.857474e-21 9.849268e-01 1.507319e-02
#> [41,] 2.377941e-13 9.999999e-01 1.271743e-07
#> [42,] 3.751481e-19 9.999124e-01 8.756011e-05
#> [43,] 8.944958e-20 9.993947e-01 6.053269e-04
#> [44,] 1.386835e-17 9.999987e-01 1.273302e-06
#> [45,] 2.421474e-19 9.992724e-01 7.275660e-04
#> [46,] 1.510041e-17 9.999993e-01 7.449744e-07
#> [47,] 2.233292e-22 9.938387e-01 6.161252e-03
#> [48,] 9.070886e-14 9.999985e-01 1.464089e-06
#> [49,] 5.217489e-17 9.999732e-01 2.680851e-05
#> [50,] 1.674158e-22 9.719677e-01 2.803234e-02
#> [51,] 3.173058e-15 9.999990e-01 9.944224e-07
#> [52,] 9.041922e-27 9.790373e-01 2.096266e-02
#> [53,] 9.465411e-17 9.999970e-01 3.045202e-06
#> [54,] 8.632202e-27 2.075616e-01 7.924384e-01
#> [55,] 2.159399e-16 9.999935e-01 6.542439e-06
#> [56,] 1.428380e-27 8.568276e-01 1.431724e-01
#> [57,] 8.472457e-21 9.995057e-01 4.942844e-04
#> [58,] 2.784802e-17 9.999829e-01 1.705453e-05
#> [59,] 5.450336e-18 9.999472e-01 5.280245e-05
#> [60,] 4.174183e-22 9.989487e-01 1.051274e-03
#> [61,] 4.534883e-26 7.602933e-01 2.397067e-01
#> [62,] 3.385492e-22 9.926904e-01 7.309575e-03
#> [63,] 1.921877e-11 1.000000e+00 1.449145e-08
#> [64,] 6.151650e-17 9.999974e-01 2.647688e-06
#> [65,] 5.418928e-15 9.999997e-01 2.885234e-07
#> [66,] 6.125645e-16 9.999968e-01 3.179623e-06
#> [67,] 3.260056e-50 5.375879e-09 1.000000e+00
#> [68,] 1.534619e-36 9.609211e-04 9.990391e-01
#> [69,] 4.298766e-41 3.843125e-05 9.999616e-01
#> [70,] 1.120396e-36 8.624695e-04 9.991375e-01
#> [71,] 2.665504e-44 1.851447e-06 9.999981e-01
#> [72,] 5.691479e-47 9.683420e-07 9.999990e-01
#> [73,] 1.005543e-31 3.051764e-02 9.694824e-01
#> [74,] 2.170455e-40 1.677627e-04 9.998322e-01
#> [75,] 1.299923e-40 2.936646e-04 9.997063e-01
#> [76,] 6.144375e-45 2.105094e-07 9.999998e-01
#> [77,] 4.613890e-31 1.568862e-02 9.843114e-01
#> [78,] 3.058067e-36 2.171019e-03 9.978290e-01
#> [79,] 8.517422e-38 2.969936e-04 9.997030e-01
#> [80,] 2.876903e-39 2.085888e-04 9.997914e-01
#> [81,] 1.721481e-44 1.154274e-06 9.999988e-01
#> [82,] 4.614421e-39 3.104958e-05 9.999690e-01
#> [83,] 8.029333e-34 5.762455e-03 9.942375e-01
#> [84,] 1.047025e-42 1.368459e-06 9.999986e-01
#> [85,] 7.150283e-57 2.601747e-09 1.000000e+00
#> [86,] 7.847879e-32 2.568989e-01 7.431011e-01
#> [87,] 1.710232e-41 9.095346e-06 9.999909e-01
#> [88,] 5.034775e-36 7.039438e-04 9.992961e-01
#> [89,] 1.297055e-47 1.520685e-06 9.999985e-01
#> [90,] 2.216946e-30 1.336448e-01 8.663552e-01
#> [91,] 5.328521e-38 8.627299e-05 9.999137e-01
#> [92,] 7.527919e-35 2.899037e-03 9.971010e-01
#> [93,] 7.099373e-29 2.331240e-01 7.668760e-01
#> [94,] 1.017544e-28 1.325438e-01 8.674562e-01
#> [95,] 2.315077e-42 1.492841e-05 9.999851e-01
#> [96,] 8.918840e-31 1.250327e-01 8.749673e-01
#> [97,] 2.927915e-40 2.443079e-04 9.997557e-01
#> [98,] 7.078517e-35 5.907724e-04 9.994092e-01
#> [99,] 4.036304e-44 3.685307e-06 9.999963e-01
#>
# Type projection
predict(iris_lda, type = "projection") # Projection on the LD axes
#> LD1 LD2
#> [1,] 6.9568849 1.101758773
#> [2,] 7.3143043 0.349409550
#> [3,] 6.6903832 0.512302451
#> [4,] 7.9437673 -0.526396971
#> [5,] 7.4913946 -1.356759342
#> [6,] 7.0443141 -0.490171701
#> [7,] 7.4399757 0.034051280
#> [8,] 6.4386717 0.909357381
#> [9,] 7.2120848 0.954828771
#> [10,] 8.1895682 -0.444199891
#> [11,] 7.0943773 -0.172103518
#> [12,] 7.1858422 1.160483149
#> [13,] 7.4175902 0.723492195
#> [14,] 9.5368393 -0.879689584
#> [15,] 8.8708188 -2.477155425
#> [16,] 8.2882993 -1.299744040
#> [17,] 7.5625273 -0.297770308
#> [18,] 7.8608135 -0.626881984
#> [19,] 7.8201493 -1.174077249
#> [20,] 7.3342677 0.389345573
#> [21,] 7.3657232 -1.041401073
#> [22,] 8.4479276 -0.853183613
#> [23,] 6.0559967 -0.075179432
#> [24,] 6.4966988 -0.214864995
#> [25,] 6.6316187 1.169201608
#> [26,] 6.6364628 -0.289552269
#> [27,] 7.7386306 -0.061398786
#> [28,] 7.7855741 0.240206078
#> [29,] 6.7166258 0.306648073
#> [30,] 6.6375292 0.689949598
#> [31,] 7.1284334 0.108503501
#> [32,] 8.9544702 -1.630830155
#> [33,] 9.2233941 -1.770750771
#> [34,] -1.4018257 0.215542317
#> [35,] -1.7446333 -0.486327810
#> [36,] -2.3278902 0.223760356
#> [37,] -2.1734350 1.616896012
#> [38,] -2.4798042 0.744773004
#> [39,] -2.2617801 0.300772664
#> [40,] -2.3661324 -1.052811848
#> [41,] -0.1592556 1.317643422
#> [42,] -1.6500487 0.862722175
#> [43,] -1.8867796 0.039219364
#> [44,] -1.0936527 2.534490411
#> [45,] -1.8174507 -0.348616687
#> [46,] -1.0533572 2.848024067
#> [47,] -2.5173487 0.214041057
#> [48,] -0.3896479 0.045755570
#> [49,] -1.1759882 0.257803374
#> [50,] -2.6346875 -0.679229623
#> [51,] -0.6375420 1.205114077
#> [52,] -3.4138326 2.195281602
#> [53,] -0.9921706 1.461747971
#> [54,] -3.6146724 -1.472866304
#> [55,] -0.9729048 0.755843737
#> [56,] -3.6807031 1.372163670
#> [57,] -2.0653447 0.810741819
#> [58,] -1.1987424 0.713582680
#> [59,] -1.4014570 0.449203926
#> [60,] -2.3565549 1.158791673
#> [61,] -3.4300580 -0.004393127
#> [62,] -2.4942258 -0.008076640
#> [63,] 0.3323463 1.482037583
#> [64,] -1.0184132 1.667402349
#> [65,] -0.5170437 1.836331036
#> [66,] -0.8433763 0.924272004
#> [67,] -7.6753629 -2.630185338
#> [68,] -5.3490939 -0.329497936
#> [69,] -6.1389227 -0.367575061
#> [70,] -5.3725855 -0.341041849
#> [71,] -6.6809564 -1.083699014
#> [72,] -7.1675754 0.012400591
#> [73,] -4.5126905 -0.223477557
#> [74,] -6.0353078 0.518686233
#> [75,] -6.0874244 1.163656598
#> [76,] -6.7590661 -2.642937904
#> [77,] -4.3775210 -1.249274587
#> [78,] -5.3084297 0.217697329
#> [79,] -5.5615762 -0.598411216
#> [80,] -5.8297626 0.008832618
#> [81,] -6.7075280 -1.390223284
#> [82,] -5.7555896 -1.837757310
#> [83,] -4.8747045 -0.422238089
#> [84,] -6.3774971 -2.359385918
#> [85,] -8.9054854 0.905644030
#> [86,] -4.5563357 1.932111501
#> [87,] -6.1865638 -1.415020182
#> [88,] -5.2468744 -0.934917158
#> [89,] -7.2960376 0.823474190
#> [90,] -4.2825677 0.333437008
#> [91,] -5.5763665 -1.584922469
#> [92,] -5.0539672 -0.396555891
#> [93,] -4.0042449 -0.035610691
#> [94,] -3.9720918 -0.720517080
#> [95,] -6.3581122 -0.421764910
#> [96,] -4.3557936 0.516003560
#> [97,] -6.0180954 0.775820547
#> [98,] -5.0291597 -1.815373745
#> [99,] -6.6602556 -0.576439772
# Add test set items to the previous plot
points(predict(iris_lda, newdata = iris_test, type = "projection"),
col = as.numeric(predict(iris_lda, newdata = iris_test)) + 1, pch = 19)
# predict() and confusion() should be used on a separate test set
# for unbiased estimation (or using cross-validation, bootstrap, ...)
# Wrong, cf. biased estimation (so-called, self-consistency)
confusion(iris_lda)
#> 99 items classified with 98 true positives (error rate = 1%)
#> Predicted
#> Actual 01 02 03 (sum) (FNR%)
#> 01 setosa 33 0 0 33 0
#> 02 versicolor 0 32 1 33 3
#> 03 virginica 0 0 33 33 0
#> (sum) 33 32 34 99 1
# Estimation using a separate test set
confusion(predict(iris_lda, newdata = iris_test), iris_test$Species)
#> 50 items classified with 47 true positives (error rate = 6%)
#> Predicted
#> Actual 01 02 03 04 (sum) (FNR%)
#> 01 setosa 16 0 0 0 16 0
#> 02 NA 0 0 0 0 0
#> 03 versicolor 0 1 15 1 17 12
#> 04 virginica 0 0 1 16 17 6
#> (sum) 16 1 16 17 50 6
# Another dataset (binary predictor... not optimal for lda, just for test)
data("HouseVotes84", package = "mlbench")
house_lda <- ml_lda(data = HouseVotes84, na.action = na.omit, Class ~ .)
#> Warning: force conversion from factor to numeric; may be not optimal or suitable
summary(house_lda)
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.formula(formula = Class ~ ., data = HouseVotes84, na.action = na.omit)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response, .args. = ..1)
#>
#> Prior probabilities of groups:
#> democrat republican
#> 0.5344828 0.4655172
#>
#> Group means:
#> V1 V2 V3 V4 V5 V6 V7
#> democrat 1.588710 1.451613 1.854839 1.048387 1.201613 1.443548 1.766129
#> republican 1.212963 1.472222 1.157407 1.990741 1.953704 1.870370 1.268519
#> V8 V9 V10 V11 V12 V13 V14
#> democrat 1.830645 1.790323 1.532258 1.508065 1.129032 1.290323 1.346774
#> republican 1.148148 1.138889 1.574074 1.157407 1.851852 1.842593 1.981481
#> V15 V16
#> democrat 1.596774 1.943548
#> republican 1.111111 1.666667
#>
#> Coefficients of linear discriminants:
#> LD1
#> V1 0.05874608
#> V2 -0.13982178
#> V3 -0.78702772
#> V4 5.64762176
#> V5 0.12150873
#> V6 -0.08307307
#> V7 0.24825927
#> V8 -0.06528145
#> V9 -0.21114235
#> V10 0.25213648
#> V11 -0.70823602
#> V12 0.02863686
#> V13 0.23819274
#> V14 -0.07092076
#> V15 0.18474183
#> V16 0.37102658
confusion(house_lda) # Self-consistency (biased metrics)
#> 232 items classified with 225 true positives (error rate = 3%)
#> Predicted
#> Actual 01 02 (sum) (FNR%)
#> 01 democrat 118 6 124 5
#> 02 republican 1 107 108 1
#> (sum) 119 113 232 3
print(confusion(house_lda), error.col = FALSE) # Without error column
#> 232 items classified with 225 true positives (error rate = 3%)
#> Predicted
#> Actual 01 02 (sum)
#> 01 democrat 118 6 124
#> 02 republican 1 107 108
#> (sum) 119 113 232
# More complex formulas
# Exclude one or more variables
iris_lda2 <- ml_lda(data = iris, Species ~ . - Sepal.Width)
summary(iris_lda2)
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.formula(formula = Species ~ . - Sepal.Width, data = iris)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response, .args. = ..1)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3333333 0.3333333 0.3333333
#>
#> Group means:
#> Sepal.Length Petal.Length Petal.Width
#> setosa 5.006 1.462 0.246
#> versicolor 5.936 4.260 1.326
#> virginica 6.588 5.552 2.026
#>
#> Coefficients of linear discriminants:
#> LD1 LD2
#> Sepal.Length -1.539022 1.591246
#> Petal.Length 2.719004 -2.619277
#> Petal.Width 2.035445 4.719647
#>
#> Proportion of trace:
#> LD1 LD2
#> 0.9936 0.0064
# With calculation
iris_lda3 <- ml_lda(data = iris, Species ~ log(Petal.Length) +
log(Petal.Width) + I(Petal.Length/Sepal.Length))
summary(iris_lda3)
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.formula(formula = Species ~ log(Petal.Length) + log(Petal.Width) + I(Petal.Length/Sepal.Length), data = iris)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response, .args. = ..1)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3333333 0.3333333 0.3333333
#>
#> Group means:
#> log(Petal.Length) log(Petal.Width) I(Petal.Length/Sepal.Length)
#> setosa 0.3727587 -1.4846488 0.2927557
#> versicolor 1.4429301 0.2709331 0.7177285
#> virginica 1.7094260 0.6967478 0.8437495
#>
#> Coefficients of linear discriminants:
#> LD1 LD2
#> log(Petal.Length) 3.487170 -8.4773418
#> log(Petal.Width) 1.213501 -0.8427381
#> I(Petal.Length/Sepal.Length) 12.699248 24.1497766
#>
#> Proportion of trace:
#> LD1 LD2
#> 0.9992 0.0008
# Factor levels with missing items are allowed
ir2 <- iris[-(51:100), ] # No Iris versicolor in the training set
iris_lda4 <- ml_lda(data = ir2, Species ~ .)
summary(iris_lda4) # missing class
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.formula(formula = Species ~ ., data = ir2)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response, .args. = ..1)
#>
#> Prior probabilities of groups:
#> setosa virginica
#> 0.5 0.5
#>
#> Group means:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa 5.006 3.428 1.462 0.246
#> virginica 6.588 2.974 5.552 2.026
#>
#> Coefficients of linear discriminants:
#> LD1
#> Sepal.Length -1.1338828
#> Sepal.Width -0.8603685
#> Petal.Length 2.6138926
#> Petal.Width 2.6310427
# Missing levels are reinjected in class or membership by predict()
predict(iris_lda4, type = "both")
#> $class
#> [1] setosa setosa setosa setosa setosa setosa setosa
#> [8] setosa setosa setosa setosa setosa setosa setosa
#> [15] setosa setosa setosa setosa setosa setosa setosa
#> [22] setosa setosa setosa setosa setosa setosa setosa
#> [29] setosa setosa setosa setosa setosa setosa setosa
#> [36] setosa setosa setosa setosa setosa setosa setosa
#> [43] setosa setosa setosa setosa setosa setosa setosa
#> [50] setosa virginica virginica virginica virginica virginica virginica
#> [57] virginica virginica virginica virginica virginica virginica virginica
#> [64] virginica virginica virginica virginica virginica virginica virginica
#> [71] virginica virginica virginica virginica virginica virginica virginica
#> [78] virginica virginica virginica virginica virginica virginica virginica
#> [85] virginica virginica virginica virginica virginica virginica virginica
#> [92] virginica virginica virginica virginica virginica virginica virginica
#> [99] virginica virginica
#> Levels: setosa versicolor virginica
#>
#> $membership
#> setosa versicolor virginica
#> [1,] 1.000000e+00 0 7.512831e-46
#> [2,] 1.000000e+00 0 7.276088e-42
#> [3,] 1.000000e+00 0 4.053527e-43
#> [4,] 1.000000e+00 0 9.767576e-39
#> [5,] 1.000000e+00 0 1.100925e-45
#> [6,] 1.000000e+00 0 4.725337e-42
#> [7,] 1.000000e+00 0 2.717145e-40
#> [8,] 1.000000e+00 0 4.696606e-43
#> [9,] 1.000000e+00 0 6.665430e-38
#> [10,] 1.000000e+00 0 2.135333e-42
#> [11,] 1.000000e+00 0 2.258299e-47
#> [12,] 1.000000e+00 0 4.302480e-40
#> [13,] 1.000000e+00 0 8.984619e-43
#> [14,] 1.000000e+00 0 4.320000e-44
#> [15,] 1.000000e+00 0 1.896091e-56
#> [16,] 1.000000e+00 0 6.736143e-50
#> [17,] 1.000000e+00 0 2.140622e-48
#> [18,] 1.000000e+00 0 2.966078e-44
#> [19,] 1.000000e+00 0 3.436672e-45
#> [20,] 1.000000e+00 0 3.105104e-44
#> [21,] 1.000000e+00 0 1.235400e-42
#> [22,] 1.000000e+00 0 4.078324e-42
#> [23,] 1.000000e+00 0 2.817007e-49
#> [24,] 1.000000e+00 0 2.930308e-35
#> [25,] 1.000000e+00 0 2.463987e-35
#> [26,] 1.000000e+00 0 2.217500e-39
#> [27,] 1.000000e+00 0 2.821729e-38
#> [28,] 1.000000e+00 0 5.940132e-45
#> [29,] 1.000000e+00 0 5.126836e-46
#> [30,] 1.000000e+00 0 2.321415e-38
#> [31,] 1.000000e+00 0 1.584158e-38
#> [32,] 1.000000e+00 0 1.296042e-42
#> [33,] 1.000000e+00 0 1.109833e-49
#> [34,] 1.000000e+00 0 2.949136e-52
#> [35,] 1.000000e+00 0 8.430330e-41
#> [36,] 1.000000e+00 0 9.076484e-47
#> [37,] 1.000000e+00 0 3.450702e-50
#> [38,] 1.000000e+00 0 1.359439e-46
#> [39,] 1.000000e+00 0 5.197906e-40
#> [40,] 1.000000e+00 0 9.633928e-44
#> [41,] 1.000000e+00 0 3.751372e-45
#> [42,] 1.000000e+00 0 1.898509e-35
#> [43,] 1.000000e+00 0 4.696510e-41
#> [44,] 1.000000e+00 0 1.322046e-35
#> [45,] 1.000000e+00 0 2.706126e-36
#> [46,] 1.000000e+00 0 1.400418e-39
#> [47,] 1.000000e+00 0 3.031589e-44
#> [48,] 1.000000e+00 0 7.617054e-41
#> [49,] 1.000000e+00 0 1.100936e-46
#> [50,] 1.000000e+00 0 4.053568e-44
#> [51,] 4.617725e-58 0 1.000000e+00
#> [52,] 8.798280e-41 0 1.000000e+00
#> [53,] 3.746998e-46 0 1.000000e+00
#> [54,] 1.244135e-42 0 1.000000e+00
#> [55,] 2.725168e-50 0 1.000000e+00
#> [56,] 8.161589e-54 0 1.000000e+00
#> [57,] 2.612854e-35 0 1.000000e+00
#> [58,] 7.462125e-47 0 1.000000e+00
#> [59,] 3.861338e-45 0 1.000000e+00
#> [60,] 6.860587e-52 0 1.000000e+00
#> [61,] 5.943151e-35 0 1.000000e+00
#> [62,] 7.949426e-40 0 1.000000e+00
#> [63,] 7.138946e-42 0 1.000000e+00
#> [64,] 1.592055e-42 0 1.000000e+00
#> [65,] 3.051613e-48 0 1.000000e+00
#> [66,] 1.333376e-43 0 1.000000e+00
#> [67,] 3.791655e-39 0 1.000000e+00
#> [68,] 3.922977e-52 0 1.000000e+00
#> [69,] 3.638913e-63 0 1.000000e+00
#> [70,] 4.805245e-34 0 1.000000e+00
#> [71,] 1.663273e-46 0 1.000000e+00
#> [72,] 4.634792e-40 0 1.000000e+00
#> [73,] 3.682206e-54 0 1.000000e+00
#> [74,] 1.421107e-32 0 1.000000e+00
#> [75,] 3.628997e-44 0 1.000000e+00
#> [76,] 3.227610e-41 0 1.000000e+00
#> [77,] 3.738057e-31 0 1.000000e+00
#> [78,] 2.201634e-32 0 1.000000e+00
#> [79,] 2.962680e-47 0 1.000000e+00
#> [80,] 6.753553e-36 0 1.000000e+00
#> [81,] 4.115135e-45 0 1.000000e+00
#> [82,] 8.322520e-43 0 1.000000e+00
#> [83,] 7.504224e-49 0 1.000000e+00
#> [84,] 1.958141e-30 0 1.000000e+00
#> [85,] 3.454159e-39 0 1.000000e+00
#> [86,] 2.172019e-48 0 1.000000e+00
#> [87,] 1.338833e-49 0 1.000000e+00
#> [88,] 2.587466e-39 0 1.000000e+00
#> [89,] 1.740755e-31 0 1.000000e+00
#> [90,] 4.462874e-39 0 1.000000e+00
#> [91,] 2.053855e-48 0 1.000000e+00
#> [92,] 1.639745e-37 0 1.000000e+00
#> [93,] 8.798280e-41 0 1.000000e+00
#> [94,] 2.296341e-50 0 1.000000e+00
#> [95,] 1.493725e-50 0 1.000000e+00
#> [96,] 5.380405e-41 0 1.000000e+00
#> [97,] 8.437651e-37 0 1.000000e+00
#> [98,] 1.393126e-37 0 1.000000e+00
#> [99,] 1.610909e-45 0 1.000000e+00
#> [100,] 6.235010e-37 0 1.000000e+00
#>
# ... but, of course, the classifier is wrong for Iris versicolor
confusion(predict(iris_lda4, newdata = iris), iris$Species)
#> 150 items classified with 100 true positives (error rate = 33.3%)
#> Predicted
#> Actual 01 02 03 (sum) (FNR%)
#> 01 setosa 50 0 0 50 0
#> 02 versicolor 1 0 49 50 100
#> 03 virginica 0 0 50 50 0
#> (sum) 51 0 99 150 33
# Simpler interface, but more memory-effective
iris_lda5 <- ml_lda(train = iris[, -5], response = iris$Species)
summary(iris_lda5)
#> A mlearning object of class mlLda (linear discriminant analysis):
#> Initial call: mlLda.default(train = iris[, -5], response = iris$Species)
#> Call:
#> lda(sapply(train, as.numeric), grouping = response)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3333333 0.3333333 0.3333333
#>
#> Group means:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa 5.006 3.428 1.462 0.246
#> versicolor 5.936 2.770 4.260 1.326
#> virginica 6.588 2.974 5.552 2.026
#>
#> Coefficients of linear discriminants:
#> LD1 LD2
#> Sepal.Length 0.8293776 -0.02410215
#> Sepal.Width 1.5344731 -2.16452123
#> Petal.Length -2.2012117 0.93192121
#> Petal.Width -2.8104603 -2.83918785
#>
#> Proportion of trace:
#> LD1 LD2
#> 0.9912 0.0088