loading...

All functions

confusion() print(<confusion>) summary(<confusion>) print(<summary.confusion>)

Construct and analyze confusion matrices

mlKnn() ml_knn() summary(<mlKnn>) print(<summary.mlKnn>) predict(<mlKnn>)

Supervised classification using k-nearest neighbor

mlLda() ml_lda() predict(<mlLda>)

Supervised classification using linear discriminant analysis

mlLvq() ml_lvq() summary(<mlLvq>) print(<summary.mlLvq>) predict(<mlLvq>)

Supervised classification using learning vector quantization

mlNaiveBayes() ml_naive_bayes() predict(<mlNaiveBayes>)

Supervised classification using naive Bayes

mlNnet() ml_nnet() predict(<mlNnet>)

Supervised classification and regression using neural network

mlQda() ml_qda() predict(<mlQda>)

Supervised classification using quadratic discriminant analysis

mlRforest() ml_rforest() predict(<mlRforest>)

Supervised classification and regression using random forest

mlRpart() ml_rpart() predict(<mlRpart>)

Supervised classification and regression using recursive partitioning

mlSvm() ml_svm() predict(<mlSvm>)

Supervised classification and regression using support vector machine

mlearning-package

'SciViews::R' - Machine Learning Algorithms with Unified Interface

mlearning() print(<mlearning>) summary(<mlearning>) print(<summary.mlearning>) plot(<mlearning>) predict(<mlearning>) cvpredict()

Machine learning model for (un)supervised classification or regression

plot(<confusion>) confusion_image() confusionImage() confusion_barplot() confusionBarplot() confusion_stars() confusionStars() confusion_dendrogram() confusionDendrogram()

Plot a confusion matrix

prior() `prior<-`()

Get or set priors on a confusion matrix

response()

Get the response variable for a mlearning object

train()

Get the training variable for a mlearning object