R/ml_rpart.R
mlRpart.Rd
Unified (formula-based) interface version of the recursive partitioning
algorithm as implemented in rpart::rpart()
.
mlRpart(train, ...)
ml_rpart(train, ...)
# S3 method for class 'formula'
mlRpart(formula, data, ..., subset, na.action)
# Default S3 method
mlRpart(train, response, ..., .args. = NULL)
# S3 method for class 'mlRpart'
predict(
object,
newdata,
type = c("class", "membership", "both"),
method = c("direct", "cv"),
...
)
a matrix or data frame with predictors.
further arguments passed to rpart::rpart()
or its predict()
method (see the corresponding help page.
a formula with left term being the factor variable to predict
(for supervised classification), a vector of numbers (for regression) and the
right term with the list of independent, predictive variables, separated with
a plus sign. If the data frame provided contains only the dependent and
independent variables, one can use the class ~ .
short version (that one is
strongly encouraged). Variables with minus sign are eliminated. Calculations
on variables are possible according to usual formula convention (possibly
protected by using I()
).
a data.frame to use as a training set.
index vector with the cases to define the training set in use (this argument must be named, if provided).
function to specify the action to be taken if NA
s are
found. For ml_rpart()
na.fail
is used by default. The calculation is
stopped if there is any NA
in the data. Another option is na.omit
,
where cases with missing values on any required variable are dropped (this
argument must be named, if provided). For the predict()
method, the
default, and most suitable option, is na.exclude
. In that case, rows with
NA
s in newdata=
are excluded from prediction, but reinjected in the
final results so that the number of items is still the same (and in the
same order as newdata=
).
a vector of factor (classification) or numeric (regression).
used internally, do not provide anything here.
an mlRpart object
a new dataset with same conformation as the training set (same variables, except may by the class for classification or dependent variable for regression). Usually a test set, or a new dataset to be predicted.
the type of prediction to return. "class"
by default, the
predicted classes. Other options are "membership"
the membership (number
between 0 and 1) to the different classes, or "both"
to return classes
and memberships,
"direct"
(default) or "cv"
. "direct"
predicts new cases in
newdata=
if this argument is provided, or the cases in the training set
if not. Take care that not providing newdata=
means that you just
calculate the self-consistency of the classifier but cannot use the
metrics derived from these results for the assessment of its performances.
Either use a different data set in newdata=
or use the alternate
cross-validation ("cv") technique. If you specify method = "cv"
then
cvpredict()
is used and you cannot provide newdata=
in that case.
ml_rpart()
/mlRpart()
creates an mlRpart, mlearning object
containing the classifier and a lot of additional metadata used by the
functions and methods you can apply to it like predict()
or
cvpredict()
. In case you want to program new functions or extract
specific components, inspect the "unclassed" object using unclass()
.
mlearning()
, cvpredict()
, confusion()
, also rpart::rpart()
that actually does the classification.
# Prepare data: split into training set (2/3) and test set (1/3)
data("iris", package = "datasets")
train <- c(1:34, 51:83, 101:133)
iris_train <- iris[train, ]
iris_test <- iris[-train, ]
# One case with missing data in train set, and another case in test set
iris_train[1, 1] <- NA
iris_test[25, 2] <- NA
iris_rpart <- ml_rpart(data = iris_train, Species ~ .)
summary(iris_rpart)
#> A mlearning object of class mlRpart (recursive partitioning tree):
#> Initial call: mlRpart.formula(formula = Species ~ ., data = iris_train)
#> n= 99
#>
#> node), split, n, loss, yval, (yprob)
#> * denotes terminal node
#>
#> 1) root 99 66 setosa (0.33333333 0.33333333 0.33333333)
#> 2) Petal.Length< 2.6 33 0 setosa (1.00000000 0.00000000 0.00000000) *
#> 3) Petal.Length>=2.6 66 33 versicolor (0.00000000 0.50000000 0.50000000)
#> 6) Petal.Width< 1.55 31 1 versicolor (0.00000000 0.96774194 0.03225806) *
#> 7) Petal.Width>=1.55 35 3 virginica (0.00000000 0.08571429 0.91428571) *
# Plot the decision tree for this classifier
plot(iris_rpart, margin = 0.03, uniform = TRUE)
text(iris_rpart, use.n = FALSE)
# Predictions
predict(iris_rpart) # Default type is class
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa versicolor versicolor versicolor
#> [37] versicolor versicolor versicolor virginica versicolor versicolor
#> [43] versicolor versicolor versicolor versicolor versicolor versicolor
#> [49] versicolor versicolor versicolor versicolor versicolor virginica
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] virginica versicolor versicolor versicolor versicolor versicolor
#> [67] virginica virginica virginica virginica virginica virginica
#> [73] virginica virginica virginica virginica virginica virginica
#> [79] virginica virginica virginica virginica virginica virginica
#> [85] virginica versicolor virginica virginica virginica virginica
#> [91] virginica virginica virginica virginica virginica virginica
#> [97] virginica virginica virginica
#> Levels: setosa versicolor virginica
predict(iris_rpart, type = "membership")
#> setosa versicolor virginica
#> 2 1 0.00000000 0.00000000
#> 3 1 0.00000000 0.00000000
#> 4 1 0.00000000 0.00000000
#> 5 1 0.00000000 0.00000000
#> 6 1 0.00000000 0.00000000
#> 7 1 0.00000000 0.00000000
#> 8 1 0.00000000 0.00000000
#> 9 1 0.00000000 0.00000000
#> 10 1 0.00000000 0.00000000
#> 11 1 0.00000000 0.00000000
#> 12 1 0.00000000 0.00000000
#> 13 1 0.00000000 0.00000000
#> 14 1 0.00000000 0.00000000
#> 15 1 0.00000000 0.00000000
#> 16 1 0.00000000 0.00000000
#> 17 1 0.00000000 0.00000000
#> 18 1 0.00000000 0.00000000
#> 19 1 0.00000000 0.00000000
#> 20 1 0.00000000 0.00000000
#> 21 1 0.00000000 0.00000000
#> 22 1 0.00000000 0.00000000
#> 23 1 0.00000000 0.00000000
#> 24 1 0.00000000 0.00000000
#> 25 1 0.00000000 0.00000000
#> 26 1 0.00000000 0.00000000
#> 27 1 0.00000000 0.00000000
#> 28 1 0.00000000 0.00000000
#> 29 1 0.00000000 0.00000000
#> 30 1 0.00000000 0.00000000
#> 31 1 0.00000000 0.00000000
#> 32 1 0.00000000 0.00000000
#> 33 1 0.00000000 0.00000000
#> 34 1 0.00000000 0.00000000
#> 51 0 0.96774194 0.03225806
#> 52 0 0.96774194 0.03225806
#> 53 0 0.96774194 0.03225806
#> 54 0 0.96774194 0.03225806
#> 55 0 0.96774194 0.03225806
#> 56 0 0.96774194 0.03225806
#> 57 0 0.08571429 0.91428571
#> 58 0 0.96774194 0.03225806
#> 59 0 0.96774194 0.03225806
#> 60 0 0.96774194 0.03225806
#> 61 0 0.96774194 0.03225806
#> 62 0 0.96774194 0.03225806
#> 63 0 0.96774194 0.03225806
#> 64 0 0.96774194 0.03225806
#> 65 0 0.96774194 0.03225806
#> 66 0 0.96774194 0.03225806
#> 67 0 0.96774194 0.03225806
#> 68 0 0.96774194 0.03225806
#> 69 0 0.96774194 0.03225806
#> 70 0 0.96774194 0.03225806
#> 71 0 0.08571429 0.91428571
#> 72 0 0.96774194 0.03225806
#> 73 0 0.96774194 0.03225806
#> 74 0 0.96774194 0.03225806
#> 75 0 0.96774194 0.03225806
#> 76 0 0.96774194 0.03225806
#> 77 0 0.96774194 0.03225806
#> 78 0 0.08571429 0.91428571
#> 79 0 0.96774194 0.03225806
#> 80 0 0.96774194 0.03225806
#> 81 0 0.96774194 0.03225806
#> 82 0 0.96774194 0.03225806
#> 83 0 0.96774194 0.03225806
#> 101 0 0.08571429 0.91428571
#> 102 0 0.08571429 0.91428571
#> 103 0 0.08571429 0.91428571
#> 104 0 0.08571429 0.91428571
#> 105 0 0.08571429 0.91428571
#> 106 0 0.08571429 0.91428571
#> 107 0 0.08571429 0.91428571
#> 108 0 0.08571429 0.91428571
#> 109 0 0.08571429 0.91428571
#> 110 0 0.08571429 0.91428571
#> 111 0 0.08571429 0.91428571
#> 112 0 0.08571429 0.91428571
#> 113 0 0.08571429 0.91428571
#> 114 0 0.08571429 0.91428571
#> 115 0 0.08571429 0.91428571
#> 116 0 0.08571429 0.91428571
#> 117 0 0.08571429 0.91428571
#> 118 0 0.08571429 0.91428571
#> 119 0 0.08571429 0.91428571
#> 120 0 0.96774194 0.03225806
#> 121 0 0.08571429 0.91428571
#> 122 0 0.08571429 0.91428571
#> 123 0 0.08571429 0.91428571
#> 124 0 0.08571429 0.91428571
#> 125 0 0.08571429 0.91428571
#> 126 0 0.08571429 0.91428571
#> 127 0 0.08571429 0.91428571
#> 128 0 0.08571429 0.91428571
#> 129 0 0.08571429 0.91428571
#> 130 0 0.08571429 0.91428571
#> 131 0 0.08571429 0.91428571
#> 132 0 0.08571429 0.91428571
#> 133 0 0.08571429 0.91428571
predict(iris_rpart, type = "both")
#> $class
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa versicolor versicolor versicolor
#> [37] versicolor versicolor versicolor virginica versicolor versicolor
#> [43] versicolor versicolor versicolor versicolor versicolor versicolor
#> [49] versicolor versicolor versicolor versicolor versicolor virginica
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] virginica versicolor versicolor versicolor versicolor versicolor
#> [67] virginica virginica virginica virginica virginica virginica
#> [73] virginica virginica virginica virginica virginica virginica
#> [79] virginica virginica virginica virginica virginica virginica
#> [85] virginica versicolor virginica virginica virginica virginica
#> [91] virginica virginica virginica virginica virginica virginica
#> [97] virginica virginica virginica
#> Levels: setosa versicolor virginica
#>
#> $membership
#> setosa versicolor virginica
#> 2 1 0.00000000 0.00000000
#> 3 1 0.00000000 0.00000000
#> 4 1 0.00000000 0.00000000
#> 5 1 0.00000000 0.00000000
#> 6 1 0.00000000 0.00000000
#> 7 1 0.00000000 0.00000000
#> 8 1 0.00000000 0.00000000
#> 9 1 0.00000000 0.00000000
#> 10 1 0.00000000 0.00000000
#> 11 1 0.00000000 0.00000000
#> 12 1 0.00000000 0.00000000
#> 13 1 0.00000000 0.00000000
#> 14 1 0.00000000 0.00000000
#> 15 1 0.00000000 0.00000000
#> 16 1 0.00000000 0.00000000
#> 17 1 0.00000000 0.00000000
#> 18 1 0.00000000 0.00000000
#> 19 1 0.00000000 0.00000000
#> 20 1 0.00000000 0.00000000
#> 21 1 0.00000000 0.00000000
#> 22 1 0.00000000 0.00000000
#> 23 1 0.00000000 0.00000000
#> 24 1 0.00000000 0.00000000
#> 25 1 0.00000000 0.00000000
#> 26 1 0.00000000 0.00000000
#> 27 1 0.00000000 0.00000000
#> 28 1 0.00000000 0.00000000
#> 29 1 0.00000000 0.00000000
#> 30 1 0.00000000 0.00000000
#> 31 1 0.00000000 0.00000000
#> 32 1 0.00000000 0.00000000
#> 33 1 0.00000000 0.00000000
#> 34 1 0.00000000 0.00000000
#> 51 0 0.96774194 0.03225806
#> 52 0 0.96774194 0.03225806
#> 53 0 0.96774194 0.03225806
#> 54 0 0.96774194 0.03225806
#> 55 0 0.96774194 0.03225806
#> 56 0 0.96774194 0.03225806
#> 57 0 0.08571429 0.91428571
#> 58 0 0.96774194 0.03225806
#> 59 0 0.96774194 0.03225806
#> 60 0 0.96774194 0.03225806
#> 61 0 0.96774194 0.03225806
#> 62 0 0.96774194 0.03225806
#> 63 0 0.96774194 0.03225806
#> 64 0 0.96774194 0.03225806
#> 65 0 0.96774194 0.03225806
#> 66 0 0.96774194 0.03225806
#> 67 0 0.96774194 0.03225806
#> 68 0 0.96774194 0.03225806
#> 69 0 0.96774194 0.03225806
#> 70 0 0.96774194 0.03225806
#> 71 0 0.08571429 0.91428571
#> 72 0 0.96774194 0.03225806
#> 73 0 0.96774194 0.03225806
#> 74 0 0.96774194 0.03225806
#> 75 0 0.96774194 0.03225806
#> 76 0 0.96774194 0.03225806
#> 77 0 0.96774194 0.03225806
#> 78 0 0.08571429 0.91428571
#> 79 0 0.96774194 0.03225806
#> 80 0 0.96774194 0.03225806
#> 81 0 0.96774194 0.03225806
#> 82 0 0.96774194 0.03225806
#> 83 0 0.96774194 0.03225806
#> 101 0 0.08571429 0.91428571
#> 102 0 0.08571429 0.91428571
#> 103 0 0.08571429 0.91428571
#> 104 0 0.08571429 0.91428571
#> 105 0 0.08571429 0.91428571
#> 106 0 0.08571429 0.91428571
#> 107 0 0.08571429 0.91428571
#> 108 0 0.08571429 0.91428571
#> 109 0 0.08571429 0.91428571
#> 110 0 0.08571429 0.91428571
#> 111 0 0.08571429 0.91428571
#> 112 0 0.08571429 0.91428571
#> 113 0 0.08571429 0.91428571
#> 114 0 0.08571429 0.91428571
#> 115 0 0.08571429 0.91428571
#> 116 0 0.08571429 0.91428571
#> 117 0 0.08571429 0.91428571
#> 118 0 0.08571429 0.91428571
#> 119 0 0.08571429 0.91428571
#> 120 0 0.96774194 0.03225806
#> 121 0 0.08571429 0.91428571
#> 122 0 0.08571429 0.91428571
#> 123 0 0.08571429 0.91428571
#> 124 0 0.08571429 0.91428571
#> 125 0 0.08571429 0.91428571
#> 126 0 0.08571429 0.91428571
#> 127 0 0.08571429 0.91428571
#> 128 0 0.08571429 0.91428571
#> 129 0 0.08571429 0.91428571
#> 130 0 0.08571429 0.91428571
#> 131 0 0.08571429 0.91428571
#> 132 0 0.08571429 0.91428571
#> 133 0 0.08571429 0.91428571
#>
# Self-consistency, do not use for assessing classifier performances!
confusion(iris_rpart)
#> 99 items classified with 95 true positives (error rate = 4%)
#> Predicted
#> Actual 01 02 03 (sum) (FNR%)
#> 01 setosa 33 0 0 33 0
#> 02 versicolor 0 30 3 33 9
#> 03 virginica 0 1 32 33 3
#> (sum) 33 31 35 99 4
# Cross-validation prediction is a good choice when there is no test set
predict(iris_rpart, method = "cv") # Idem: cvpredict(res)
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa versicolor versicolor versicolor
#> [37] versicolor versicolor versicolor virginica versicolor versicolor
#> [43] versicolor versicolor versicolor versicolor versicolor versicolor
#> [49] versicolor versicolor versicolor versicolor versicolor virginica
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] virginica versicolor versicolor versicolor versicolor versicolor
#> [67] virginica virginica virginica virginica virginica virginica
#> [73] versicolor virginica virginica virginica virginica virginica
#> [79] virginica virginica virginica virginica virginica virginica
#> [85] virginica versicolor virginica virginica virginica virginica
#> [91] virginica virginica virginica virginica virginica versicolor
#> [97] virginica virginica virginica
#> attr(,"method")
#>
#> Call:
#> cvpredict.mlearning(object = object, type = type)
#>
#> 10-fold cross-validation estimator of misclassification error
#>
#> Misclassification error: 0.0606
#>
#> Levels: setosa versicolor virginica
confusion(iris_rpart, method = "cv")
#> 99 items classified with 90 true positives (error rate = 9.1%)
#> Predicted
#> Actual 01 02 03 (sum) (FNR%)
#> 01 setosa 33 0 0 33 0
#> 02 versicolor 0 28 5 33 15
#> 03 virginica 0 4 29 33 12
#> (sum) 33 32 34 99 9
# Evaluation of performances using a separate test set
confusion(predict(iris_rpart, newdata = iris_test), iris_test$Species)
#> 50 items classified with 45 true positives (error rate = 10%)
#> Predicted
#> Actual 01 02 03 04 (sum) (FNR%)
#> 01 versicolor 14 2 0 1 17 18
#> 02 virginica 2 15 0 0 17 12
#> 03 setosa 0 0 16 0 16 0
#> 04 NA 0 0 0 0 0
#> (sum) 16 17 16 1 50 10